49   :
G4VEmModel(nam),fParticleChange(0),smallEnergy(4.*
MeV),isInitialised(false),
 
   50    crossSectionHandler(0),meanFreePathTable(0)
 
   65     G4cout << 
"Triplet Gamma conversion is constructed " << 
G4endl 
   87     G4cout << 
"Calling G4BoldyshevTripletModel::Initialise()" << 
G4endl;
 
   99   G4String crossSectionFile = 
"tripdata/pp-trip-cs-"; 
 
  105     G4cout << 
"Loaded cross section files for Livermore GammaConversion" << 
G4endl;
 
  106     G4cout << 
"To obtain the total cross section this should be used only " << G4endl 
 
  107            << 
"in connection with G4NuclearGammaConversion " << 
G4endl;
 
  111     G4cout << 
"Livermore Electron Gamma Conversion model is initialized " << G4endl
 
  132     G4cout << 
"Calling ComputeCrossSectionPerAtom() of G4BoldyshevTripletModel"  
  135   if (GammaEnergy < lowEnergyLimit || GammaEnergy > 
highEnergyLimit) 
return 0;
 
  154     G4cout << 
"Calling SampleSecondaries() of G4BoldyshevTripletModel" << 
G4endl;
 
  162   G4double positronTotEnergy, electronTotEnergy, thetaEle, thetaPos;
 
  163   G4double ener_re=0., theta_re, phi_re, phi;
 
  167   G4double energyThreshold = sqrt(2.)*electron_mass_c2; 
 
  168   energyThreshold = 1.1*electron_mass_c2;
 
  171   G4double momentumThreshold_c = sqrt(energyThreshold * energyThreshold - electron_mass_c2*electron_mass_c2); 
 
  172   G4double momentumThreshold_N = momentumThreshold_c/electron_mass_c2; 
 
  176   G4double SigmaTot = (28./9.) * std::log ( 2.* photonEnergy / electron_mass_c2 ) - 218. / 27. ; 
 
  177   G4double X_0 = 2. * ( sqrt(momentumThreshold_N*momentumThreshold_N + 1) -1 );
 
  178   G4double SigmaQ = (82./27. - (14./9.) * log (X_0) + 4./15.*X_0 - 0.0348 * X_0 * X_0); 
 
  182   if (recoilProb >= SigmaQ/SigmaTot) 
 
  185       G4double cosThetaMax = (  ( energyThreshold - electron_mass_c2 ) / (momentumThreshold_c) + electron_mass_c2*
 
  186                                 ( energyThreshold + electron_mass_c2 ) / (photonEnergy*momentumThreshold_c) );
 
  192       G4double are, bre, loga, f1_re, greject, cost;
 
  198         cost = pow(cosThetaMax,r1);
 
  199         theta_re = acos(cost);
 
  200         are = 1./(14.*cost*cost);
 
  201         bre = (1.-5.*cost*cost)/(2.*cost);
 
  202         loga = log((1.+ cost)/(1.- cost));
 
  203         f1_re = 1. - bre*loga;
 
  211       } 
while(greject < r2);
 
  223         G4double fp = 1. - sint2*loga/(2.*cost) ;
 
  224         rt = (1.-cos(2.*phi_re)*fp/f1_re)/(2.*
pi) ;
 
  230       G4double S = electron_mass_c2*(2.* photonEnergy + electron_mass_c2);
 
  231       G4double D2 = 4.*S * electron_mass_c2*electron_mass_c2
 
  232         + (S - electron_mass_c2*electron_mass_c2)
 
  233         *(S - electron_mass_c2*electron_mass_c2)*sin(theta_re)*sin(theta_re);
 
  234       ener_re = electron_mass_c2 * (S + electron_mass_c2*electron_mass_c2)/sqrt(D2);
 
  238       G4double momentum_recoil = 2* (electron_mass_c2) * (std::cos(theta_re)/(std::sin(phi_re)*std::sin(phi_re)));
 
  239       G4double ener_recoil = sqrt( momentum_recoil*momentum_recoil + electron_mass_c2*electron_mass_c2);
 
  240       ener_re = ener_recoil;
 
  245       G4double dxEle_re=sin(theta_re)*std::cos(phi_re),dyEle_re=sin(theta_re)*std::sin(phi_re), dzEle_re=cos(theta_re);
 
  249       G4ThreeVector electronRDirection (dxEle_re, dyEle_re, dzEle_re);
 
  250       electronRDirection.rotateUz(photonDirection);
 
  254                                                             electronRKineEnergy);
 
  255       fvect->push_back(particle3);          
 
  268   G4double t = 0.5*log(momentumThreshold_N + sqrt(momentumThreshold_N*momentumThreshold_N+1));
 
  272   G4double J1 = 0.5*(t*cosh(t)/sinh(t) - log(2.*sinh(t)));
 
  273   G4double J2 = (-2./3.)*log(2.*sinh(t)) + t*cosh(t)/sinh(t) + (sinh(t)-t*pow(cosh(t),3))/(3.*pow(sinh(t),3));
 
  280   G4double b1 =  16. - 3.*b - 36.*b*re*n + 36.*b*pow(re,2.)*pow(n,2.) + 
 
  283   G4double c1 = (-6. + 12.*re*n + b + 2*
a)*pow(b,2.);
 
  284   epsilon = (pow(c1,1./3.))/(2.*b) + (b-4.)/(2.*pow(c1,1./3.))+0.5;
 
  286   G4double photonEnergy1 = photonEnergy - ener_re ; 
 
  287   positronTotEnergy = epsilon*photonEnergy1;
 
  288   electronTotEnergy = photonEnergy1 - positronTotEnergy; 
 
  290   G4double momento_e = sqrt(electronTotEnergy*electronTotEnergy - 
 
  291                             electron_mass_c2*electron_mass_c2) ;
 
  292   G4double momento_p = sqrt(positronTotEnergy*positronTotEnergy - 
 
  293                             electron_mass_c2*electron_mass_c2) ;
 
  295   thetaEle = acos((sqrt(p0*p0/(momento_e*momento_e) +1.)- p0/momento_e)) ;
 
  296   thetaPos = acos((sqrt(p0*p0/(momento_p*momento_p) +1.)- p0/momento_p)) ;
 
  299   G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
 
  300   G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
 
  307   G4double electronKineEnergy = 
std::max(0.,electronTotEnergy - electron_mass_c2) ;
 
  312   electronDirection.rotateUz(photonDirection);
 
  319   G4double positronKineEnergy = 
std::max(0.,positronTotEnergy - electron_mass_c2) ;
 
  324   positronDirection.rotateUz(photonDirection);   
 
  328                                                        positronDirection, positronKineEnergy);
 
  332   fvect->push_back(particle1);
 
  333   fvect->push_back(particle2);
 
G4double LowEnergyLimit() const 
 
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
G4double HighEnergyLimit() const 
 
G4BoldyshevTripletModel(const G4ParticleDefinition *p=0, const G4String &nam="BoldyshevTriplet")
 
G4double asinh(G4double value)
 
virtual ~G4BoldyshevTripletModel()
 
G4ParticleChangeForGamma * fParticleChange
 
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
 
void SetHighEnergyLimit(G4double)
 
G4double FindValue(G4int Z, G4double e) const 
 
G4GLOB_DLL std::ostream G4cout
 
const G4ThreeVector & GetMomentumDirection() const 
 
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
 
static G4Positron * Positron()
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
void LoadData(const G4String &dataFile)
 
G4VCrossSectionHandler * crossSectionHandler
 
static G4Electron * Electron()
 
void SetProposedKineticEnergy(G4double proposedKinEnergy)
 
void ProposeTrackStatus(G4TrackStatus status)
 
G4ThreeVector G4ParticleMomentum
 
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
 
G4ParticleChangeForGamma * GetParticleChangeForGamma()