76 0.5917, 0.7628, 0.8983, 0.9801 };
79 0.1813, 0.1569, 0.1112, 0.0506 };
91 bremFactor(fine_structure_const*classic_electr_radius*classic_electr_radius*16./3.),
93 fMigdalConstant(classic_electr_radius*electron_Compton_length*electron_Compton_length*4.0*
pi),
94 fLPMconstant(fine_structure_const*electron_mass_c2*electron_mass_c2/(4.*
pi*hbarc)*0.5),
95 fXiLPM(0), fPhiLPM(0), fGLPM(0),
96 use_completescreening(false),isInitialised(false)
127 preS1 = 1./(184.15*184.15);
218 if(cut == 0.0) {
return 0.0; }
256 for(
G4int l=0; l<
n; l++) {
258 for(
G4int i=0; i<8; i++) {
291 if(cut >= tmax) {
return 0.0; }
323 for(
G4int l=0; l<
n; l++) {
325 for(
G4int i=0; i<8; i++) {
360 else if (sprime>sqrt(2.)*s1) {
362 xiLPM = 1+h-0.08*(1-h)*(1-
sqr(1-h))/logTS1;
375 if (s0<=s1)
xiLPM = 2.;
376 else if ( (s1<s0) && (s0<=1) ) {
xiLPM = 1. +
G4Log(s0)/logS1; }
387 phiLPM = 6.*s0 - 18.84955592153876*s2 + 39.47841760435743*s3
388 - 57.69873135166053*s4;
389 gLPM = 37.69911184307752*s2 - 236.8705056261446*s3 + 807.7822389*s4;
391 else if (s0<1.9516) {
395 +s3/(0.623+0.795*s0+0.658*s2));
396 if (s0<0.415827397755) {
398 G4double psiLPM = 1-
G4Exp(-4*s0-8*s2/(1+3.936*s0+4.97*s2-0.05*s3+7.50*s4));
403 G4double pre = -0.16072300849123999 + s0*3.7550300067531581 + s2*-1.7981383069010097
404 + s3*0.67282686077812381 + s4*-0.1207722909879257;
410 phiLPM = 1. - 0.0119048/s4;
411 gLPM = 1. - 0.0230655/s4;
427 if(gammaEnergy < 0.0) {
return 0.0; }
442 G4double cross = mainLPM+secondTerm;
455 if(gammaEnergy < 0.0) {
return 0.0; }
464 secondTerm = (1.-y)/12.*(1.+1./
currentZ);
475 secondTerm = (1.-y)/8.*(phi1m2+psi1m2/
currentZ);
484 std::vector<G4DynamicParticle*>* vdp,
494 if(cut >= emax) {
return; }
516 if(x < 0.0) { x = 0.0; }
517 gammaEnergy = sqrt(x);
522 G4cout <<
"### G4eBremsstrahlungRelModel Warning: Majoranta exceeded! "
523 << f <<
" > " <<
fMax
524 <<
" Egamma(MeV)= " << gammaEnergy
525 <<
" Ee(MeV)= " << kineticEnergy
545 vdp->push_back(gamma);
547 G4double totMomentum = sqrt(kineticEnergy*(totalEnergy + electron_mass_c2));
549 - gammaEnergy*gammaDirection).unit();
552 G4double finalE = kineticEnergy - gammaEnergy;
G4double Psi1(G4double, G4double)
G4double LowEnergyLimit() const
G4ParticleChangeForLoss * GetParticleChangeForLoss()
G4double SecondaryThreshold() const
G4bool isElectron(G4int ityp)
std::vector< G4Element * > G4ElementVector
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
void InitialiseConstants()
static const G4double wgi[8]
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
G4VEmAngularDistribution * GetAngularDistribution()
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double tkin, G4double Z, G4double, G4double cutEnergy, G4double maxEnergy=DBL_MAX)
static const G4double eps
G4double Psi1M2(G4double, G4double)
const G4ElementVector * GetElementVector() const
virtual void SetupForMaterial(const G4ParticleDefinition *, const G4Material *, G4double)
static G4NistManager * Instance()
const G4ParticleDefinition * particle
static const G4double xgi[8]
G4ParticleDefinition * theGamma
G4GLOB_DLL std::ostream G4cout
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
static const G4double Finel_light[5]
G4double GetElectronDensity() const
const G4ThreeVector & GetMomentumDirection() const
G4double ComputeRelDXSectionPerAtom(G4double gammaEnergy)
G4double Phi1(G4double, G4double)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
virtual ~G4eBremsstrahlungRelModel()
std::vector< G4EmElementSelector * > * GetElementSelectors()
void SetProposedMomentumDirection(const G4ThreeVector &dir)
G4double GetRadlen() const
const G4double * GetAtomicNumDensityVector() const
int main(int argc, char **argv)
G4eBremsstrahlungRelModel(const G4ParticleDefinition *p=0, const G4String &nam="eBremLPM")
G4double G4Log(G4double x)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double cutEnergy, G4double maxEnergy)
virtual G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double cut)
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
G4double GetPDGMass() const
static const G4double Fel_light[5]
T max(const T t1, const T t2)
brief Return the largest of the two arguments
virtual G4double ComputeDXSectionPerAtom(G4double gammaEnergy)
void SetLPMFlag(G4bool val)
G4double Phi1M2(G4double, G4double)
void SetAngularDistribution(G4VEmAngularDistribution *)
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4double ComputeXSectionPerAtom(G4double cutEnergy)
static G4Electron * Electron()
const G4String & GetName() const
G4ParticleChangeForLoss * fParticleChange
size_t GetNumberOfElements() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
void SetParticle(const G4ParticleDefinition *p)
G4bool use_completescreening
void ProposeTrackStatus(G4TrackStatus status)
void SetLowEnergyLimit(G4double)
G4double energyThresholdLPM
void SetCurrentElement(const G4Element *)
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel)
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
const G4Material * GetMaterial() const
G4double ComputeBremLoss(G4double cutEnergy)
void CalcLPMFunctions(G4double gammaEnergy)
void SetCurrentElement(const G4double)