82 fDensity = fElectronDensity = fNormalizationCof = fLowEnergyCof = 0.0;
83 fIntervalNumber = fSplineNumber = 0;
87 fRePartDielectricConst =
G4DataVector(fMaxSplineSize,0.0);
88 fImPartDielectricConst =
G4DataVector(fMaxSplineSize,0.0);
98 for(
G4int i = 0; i < 500; ++i )
100 for(
G4int j = 0; j < 112; ++j ) fPAItable[i][j] = 0.0;
123 G4cout<<
"G4PAIySection::Initialize(...,G4SandiaTable* sandia)"<<
G4endl;
137 G4cout<<
"fDensity = "<<fDensity<<
"\t"<<fElectronDensity<<
"\t fIntervalNumber = "<<fIntervalNumber<<
G4endl;
145 for( i = 1; i <= fIntervalNumber; i++ )
154 fEnergyInterval[i] = maxEnergyTransfer;
166 G4cout<<i<<
"\t"<<fEnergyInterval[i]/
keV<<
"\t"<<fA1[i]<<
"\t"<<fA2[i]<<
"\t"
167 <<fA3[i]<<
"\t"<<fA4[i]<<
"\t"<<
G4endl;
170 if( fVerbose > 0 )
G4cout<<
"last i = "<<i<<
"; "<<
"fIntervalNumber = "<<fIntervalNumber<<
G4endl;
172 if( fEnergyInterval[fIntervalNumber] != maxEnergyTransfer )
175 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer;
179 for( i = 1; i <= fIntervalNumber; i++ )
181 G4cout<<i<<
"\t"<<fEnergyInterval[i]/
keV<<
"\t"<<fA1[i]<<
"\t"<<fA2[i]<<
"\t"
182 <<fA3[i]<<
"\t"<<fA4[i]<<
"\t"<<
G4endl;
185 if( fVerbose > 0 )
G4cout<<
"Now checking, if two borders are too close together"<<
G4endl;
187 for( i = 1; i < fIntervalNumber; i++ )
189 if( fEnergyInterval[i+1]-fEnergyInterval[i] >
190 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i]) )
continue;
193 for( j = i; j < fIntervalNumber; j++ )
195 fEnergyInterval[j] = fEnergyInterval[j+1];
207 for( i = 1; i <= fIntervalNumber; i++ )
209 G4cout<<i<<
"\t"<<fEnergyInterval[i]/
keV<<
"\t"<<fA1[i]<<
"\t"<<fA2[i]<<
"\t"
210 <<fA3[i]<<
"\t"<<fA4[i]<<
"\t"<<
G4endl;
215 ComputeLowEnergyCof(material);
218 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1;
220 NormShift(betaGammaSqRef);
221 SplainPAI(betaGammaSqRef);
225 for( i = 1; i <= fSplineNumber; i++ )
227 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq);
229 if( fVerbose > 0 )
G4cout<<i<<
"; dNdxPAI = "<<fDifPAIySection[i]<<
G4endl;
231 IntegralPAIySection();
244 static const G4double p0 = 1.20923e+00;
245 static const G4double p1 = 3.53256e-01;
246 static const G4double p2 = -1.45052e-03;
251 for( i = 0; i < numberOfElements; i++ )
254 sumZ += thisMaterialZ[i];
255 thisMaterialCof[i] = p0+p1*thisMaterialZ[i]+p2*thisMaterialZ[i]*thisMaterialZ[i];
257 for( i = 0; i < numberOfElements; i++ )
259 sumCof += thisMaterialCof[i]*thisMaterialZ[i]/sumZ;
261 fLowEnergyCof = sumCof;
262 delete [] thisMaterialZ;
263 delete [] thisMaterialCof;
275 G4double betaGammaSq = fLorentzFactor[fRefGammaNumber]*
276 fLorentzFactor[fRefGammaNumber] - 1;
280 NormShift(betaGammaSq);
281 SplainPAI(betaGammaSq);
283 IntegralPAIySection();
287 for( i = 0; i<= fSplineNumber; i++)
289 fPAItable[i][fRefGammaNumber] = fIntegralPAIySection[i];
291 if(i != 0) fPAItable[i][0] = fSplineEnergy[i];
293 fPAItable[0][0] = fSplineNumber;
295 for(
G4int j = 1; j < 112; j++)
297 if( j == fRefGammaNumber )
continue;
299 betaGammaSq = fLorentzFactor[j]*fLorentzFactor[j] - 1;
301 for(i = 1; i <= fSplineNumber; i++)
303 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq);
304 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq);
305 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq);
307 IntegralPAIySection();
311 for(i = 0; i <= fSplineNumber; i++)
313 fPAItable[i][j] = fIntegralPAIySection[i];
327 for( i = 1; i <= fIntervalNumber-1; i++ )
329 for( j = 1; j <= 2; j++ )
331 fSplineNumber = (i-1)*2 + j;
333 if( j == 1 ) fSplineEnergy[fSplineNumber] = fEnergyInterval[i ]*(1+fDelta);
334 else fSplineEnergy[fSplineNumber] = fEnergyInterval[i+1]*(1-fDelta);
339 fIntegralTerm[1]=RutherfordIntegral(1,fEnergyInterval[1],fSplineEnergy[1]);
343 for(i=2;i<=fSplineNumber;i++)
345 if(fSplineEnergy[i]<fEnergyInterval[j+1])
347 fIntegralTerm[i] = fIntegralTerm[i-1] +
348 RutherfordIntegral(j,fSplineEnergy[i-1],
353 G4double x = RutherfordIntegral(j,fSplineEnergy[i-1],
354 fEnergyInterval[j+1] );
356 fIntegralTerm[i] = fIntegralTerm[i-1] + x +
357 RutherfordIntegral(j,fEnergyInterval[j],
362 fNormalizationCof = 2*
pi*
pi*hbarc*hbarc*fine_structure_const/electron_mass_c2;
363 fNormalizationCof *= fElectronDensity/fIntegralTerm[fSplineNumber];
370 for(
G4int k=1;k<=fIntervalNumber-1;k++)
375 fImPartDielectricConst[i] = fNormalizationCof*
376 ImPartDielectricConst(k,fSplineEnergy[i]);
377 fRePartDielectricConst[i] = fNormalizationCof*
378 RePartDielectricConst(fSplineEnergy[i]);
379 fIntegralTerm[i] *= fNormalizationCof;
381 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq);
382 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq);
383 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq);
400 while ( (i < fSplineNumber) && (fSplineNumber < fMaxSplineSize-1) )
402 if(fSplineEnergy[i+1] > fEnergyInterval[k+1])
412 for(
G4int j = fSplineNumber; j >= i+2; j-- )
414 fSplineEnergy[j] = fSplineEnergy[j-1];
415 fImPartDielectricConst[j] = fImPartDielectricConst[j-1];
416 fRePartDielectricConst[j] = fRePartDielectricConst[j-1];
417 fIntegralTerm[j] = fIntegralTerm[j-1];
419 fDifPAIySection[j] = fDifPAIySection[j-1];
420 fdNdxCerenkov[j] = fdNdxCerenkov[j-1];
421 fdNdxPlasmon[j] = fdNdxPlasmon[j-1];
429 fSplineEnergy[i+1] = en1;
435 G4double b = log10(yy1) - a*log10(x1);
441 fImPartDielectricConst[i+1] = fNormalizationCof*
442 ImPartDielectricConst(k,fSplineEnergy[i+1]);
443 fRePartDielectricConst[i+1] = fNormalizationCof*
444 RePartDielectricConst(fSplineEnergy[i+1]);
445 fIntegralTerm[i+1] = fIntegralTerm[i] + fNormalizationCof*
446 RutherfordIntegral(k,fSplineEnergy[i],
449 fDifPAIySection[i+1] = DifPAIySection(i+1,betaGammaSq);
450 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i+1,betaGammaSq);
451 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+1,betaGammaSq);
456 G4double x = 2*(fDifPAIySection[i+1] - y)/(fDifPAIySection[i+1] + y);
458 G4double delta = 2.*(fSplineEnergy[i+1]-fSplineEnergy[i])/(fSplineEnergy[i+1]+fSplineEnergy[i]);
464 if( x > fError && fSplineNumber < fMaxSplineSize-1 && delta > 2.*fDelta )
486 c1 = (x2 - x1)/x1/x2;
487 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2;
488 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2;
491 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3[k]*c2/2 + fA4[k]*c3/3;
504 G4double energy2,energy3,energy4,result;
506 energy2 = energy1*energy1;
507 energy3 = energy2*energy1;
508 energy4 = energy3*energy1;
510 result = fA1[k]/energy1+fA2[k]/energy2+fA3[k]/energy3+fA4[k]/energy4;
511 result *=hbarc/energy1;
526 G4double x0, x02, x03, x04, x05, x1, x2, xx1 ,xx2 , xx12,
527 c1,
c2,
c3, cof1, cof2, xln1, xln2, xln3, result;
532 for(
G4int i=1;i<=fIntervalNumber-1;i++)
534 x1 = fEnergyInterval[i];
535 x2 = fEnergyInterval[i+1];
546 xln3 = log((x2 + x0)/(x1 + x0));
551 c1 = (x2 - x1)/x1/x2;
552 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2;
553 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2;
555 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1;
556 result -= (fA2[i]/x02 + fA4[i]/x04)*c1;
557 result -= fA3[i]*c2/2/x02;
558 result -= fA4[i]*c3/3/x02;
560 cof1 = fA1[i]/x02 + fA3[i]/x04;
561 cof2 = fA2[i]/x03 + fA4[i]/x05;
563 result += 0.5*(cof1 +cof2)*xln2;
564 result += 0.5*(cof1 - cof2)*xln3;
566 result *= 2*hbarc/
pi;
581 G4double beta, be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,result;
586 be2 = betaGammaSq/(1 + betaGammaSq);
590 x1 = log(2*electron_mass_c2/fSplineEnergy[i]);
592 if( betaGammaSq < 0.01 ) x2 = log(be2);
595 x2 = -log( (1/betaGammaSq - fRePartDielectricConst[i])*
596 (1/betaGammaSq - fRePartDielectricConst[i]) +
597 fImPartDielectricConst[i]*fImPartDielectricConst[i] )/2;
599 if( fImPartDielectricConst[i] == 0.0 ||betaGammaSq < 0.01 )
605 x3 = -fRePartDielectricConst[i] + 1/betaGammaSq;
606 x5 = -1 - fRePartDielectricConst[i] +
607 be2*((1 +fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) +
608 fImPartDielectricConst[i]*fImPartDielectricConst[i]);
610 x7 = atan2(fImPartDielectricConst[i],x3);
615 x4 = ((x1 + x2)*fImPartDielectricConst[i] + x6)/hbarc;
617 x8 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) +
618 fImPartDielectricConst[i]*fImPartDielectricConst[i];
620 result = (x4 + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i]);
621 if(result < 1.0e-8) result = 1.0e-8;
622 result *= fine_structure_const/be2/
pi;
627 result *= (1 - exp(-beta/
betaBohr/lowCof));
648 G4double logarithm, x3, x5, argument, modul2, dNdxC;
653 be2 = betaGammaSq/(1 + betaGammaSq);
656 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq);
659 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])*
660 (1/betaGammaSq - fRePartDielectricConst[i]) +
661 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5;
662 logarithm += log(1+1.0/betaGammaSq);
665 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 )
671 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq;
672 x5 = -1.0 - fRePartDielectricConst[i] +
673 be2*((1.0 +fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) +
674 fImPartDielectricConst[i]*fImPartDielectricConst[i]);
675 if( x3 == 0.0 ) argument = 0.5*
pi;
676 else argument = atan2(fImPartDielectricConst[i],x3);
679 dNdxC = ( logarithm*fImPartDielectricConst[i] + argument )/hbarc;
681 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8;
683 dNdxC *= fine_structure_const/be2/
pi;
689 modul2 = (1.0 + fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) +
690 fImPartDielectricConst[i]*fImPartDielectricConst[i];
707 G4double cof, resonance, modul2, dNdxP;
712 be2 = betaGammaSq/(1 + betaGammaSq);
715 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]);
716 resonance *= fImPartDielectricConst[i]/hbarc;
718 dNdxP = ( resonance + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i] );
720 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8;
722 dNdxP *= fine_structure_const/be2/
pi;
727 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) +
728 fImPartDielectricConst[i]*fImPartDielectricConst[i];
745 fIntegralPAIySection[fSplineNumber] = 0;
746 fIntegralPAIdEdx[fSplineNumber] = 0;
747 fIntegralPAIySection[0] = 0;
748 G4int k = fIntervalNumber -1;
750 for(
G4int i = fSplineNumber-1; i >= 1; i--)
752 if(fSplineEnergy[i] >= fEnergyInterval[k])
754 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] + SumOverInterval(i);
755 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + SumOverIntervaldEdx(i);
759 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] +
760 SumOverBorder(i+1,fEnergyInterval[k]);
761 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] +
762 SumOverBorderdEdx(i+1,fEnergyInterval[k]);
777 fIntegralCerenkov[fSplineNumber] = 0;
778 fIntegralCerenkov[0] = 0;
779 k = fIntervalNumber -1;
781 for( i = fSplineNumber-1; i >= 1; i-- )
783 if(fSplineEnergy[i] >= fEnergyInterval[k])
785 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + SumOverInterCerenkov(i);
790 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] +
791 SumOverBordCerenkov(i+1,fEnergyInterval[k]);
807 fIntegralPlasmon[fSplineNumber] = 0;
808 fIntegralPlasmon[0] = 0;
809 G4int k = fIntervalNumber -1;
810 for(
G4int i=fSplineNumber-1;i>=1;i--)
812 if(fSplineEnergy[i] >= fEnergyInterval[k])
814 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + SumOverInterPlasmon(i);
818 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] +
819 SumOverBordPlasmon(i+1,fEnergyInterval[k]);
836 x0 = fSplineEnergy[i];
837 x1 = fSplineEnergy[i+1];
839 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6)
return 0.;
841 y0 = fDifPAIySection[i];
842 yy1 = fDifPAIySection[i+1];
846 a = log10(yy1/y0)/log10(c);
853 result = b*log(x1/x0);
857 result = y0*(x1*pow(c,a-1) - x0)/a;
862 fIntegralPAIySection[0] += b*log(x1/x0);
866 fIntegralPAIySection[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
878 x0 = fSplineEnergy[i];
879 x1 = fSplineEnergy[i+1];
881 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6)
return 0.;
883 y0 = fDifPAIySection[i];
884 yy1 = fDifPAIySection[i+1];
886 a = log10(yy1/y0)/log10(c);
892 result = b*log(x1/x0);
896 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
912 x0 = fSplineEnergy[i];
913 x1 = fSplineEnergy[i+1];
915 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6)
return 0.;
917 y0 = fdNdxCerenkov[i];
918 yy1 = fdNdxCerenkov[i+1];
923 a = log10(yy1/y0)/log10(c);
925 if(a < 20.) b = y0/pow(x0,a);
928 if(a == 0) result = b*log(c);
929 else result = y0*(x1*pow(c,a-1) - x0)/a;
932 if( a == 0 ) fIntegralCerenkov[0] += b*log(x1/x0);
933 else fIntegralCerenkov[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
949 x0 = fSplineEnergy[i];
950 x1 = fSplineEnergy[i+1];
952 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6)
return 0.;
954 y0 = fdNdxPlasmon[i];
955 yy1 = fdNdxPlasmon[i+1];
957 a = log10(yy1/y0)/log10(c);
960 if(a < 20.) b = y0/pow(x0,a);
963 if(a == 0) result = b*log(x1/x0);
964 else result = y0*(x1*pow(c,a-1) - x0)/a;
967 if( a == 0 ) fIntegralPlasmon[0] += b*log(x1/x0);
968 else fIntegralPlasmon[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
985 x0 = fSplineEnergy[i];
986 x1 = fSplineEnergy[i+1];
987 y0 = fDifPAIySection[i];
988 yy1 = fDifPAIySection[i+1];
992 a = log10(yy1/y0)/log10(x1/x0);
995 if(a < 20.) b = y0/pow(x0,a);
1000 result = b*log(x0/e0);
1004 result = y0*(x0 - e0*pow(d,a-1))/a;
1009 fIntegralPAIySection[0] += b*log(x0/e0);
1013 fIntegralPAIySection[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
1015 x0 = fSplineEnergy[i - 1];
1016 x1 = fSplineEnergy[i - 2];
1017 y0 = fDifPAIySection[i - 1];
1018 yy1 = fDifPAIySection[i - 2];
1022 a = log10(yy1/y0)/log10(x1/x0);
1028 result += b*log(e0/x0);
1032 result += y0*(e0*pow(d,a-1) - x0)/a;
1037 fIntegralPAIySection[0] += b*log(e0/x0);
1041 fIntegralPAIySection[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
1055 x0 = fSplineEnergy[i];
1056 x1 = fSplineEnergy[i+1];
1057 y0 = fDifPAIySection[i];
1058 yy1 = fDifPAIySection[i+1];
1062 a = log10(yy1/y0)/log10(x1/x0);
1065 if(a < 20.) b = y0/pow(x0,a);
1070 result = b*log(x0/e0);
1074 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
1076 x0 = fSplineEnergy[i - 1];
1077 x1 = fSplineEnergy[i - 2];
1078 y0 = fDifPAIySection[i - 1];
1079 yy1 = fDifPAIySection[i - 2];
1083 a = log10(yy1/y0)/log10(x1/x0);
1085 if(a < 20.) b = y0/pow(x0,a);
1090 result += b*log(e0/x0);
1094 result += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
1111 x0 = fSplineEnergy[i];
1112 x1 = fSplineEnergy[i+1];
1113 y0 = fdNdxCerenkov[i];
1114 yy1 = fdNdxCerenkov[i+1];
1121 a = log10(yy1/y0)/log10(c);
1124 if(a < 20.) b = y0/pow(x0,a);
1127 if( a == 0 ) result = b*log(x0/e0);
1128 else result = y0*(x0 - e0*pow(d,a-1))/a;
1131 if( a == 0 ) fIntegralCerenkov[0] += b*log(x0/e0);
1132 else fIntegralCerenkov[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
1136 x0 = fSplineEnergy[i - 1];
1137 x1 = fSplineEnergy[i - 2];
1138 y0 = fdNdxCerenkov[i - 1];
1139 yy1 = fdNdxCerenkov[i - 2];
1146 a = log10(yy1/y0)/log10(x1/x0);
1149 if(a < 20.) b = y0/pow(x0,a);
1151 if(a > 20.0) b = 0.0;
1152 else b = y0/pow(x0,a);
1157 if( a == 0 ) result += b*log(e0/x0);
1158 else result += y0*(e0*pow(d,a-1) - x0 )/a;
1162 if( a == 0 ) fIntegralCerenkov[0] += b*log(e0/x0);
1163 else fIntegralCerenkov[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
1182 x0 = fSplineEnergy[i];
1183 x1 = fSplineEnergy[i+1];
1184 y0 = fdNdxPlasmon[i];
1185 yy1 = fdNdxPlasmon[i+1];
1189 a = log10(yy1/y0)/log10(c);
1192 if(a < 20.) b = y0/pow(x0,a);
1195 if( a == 0 ) result = b*log(x0/e0);
1196 else result = y0*(x0 - e0*pow(d,a-1))/a;
1199 if( a == 0 ) fIntegralPlasmon[0] += b*log(x0/e0);
1200 else fIntegralPlasmon[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
1202 x0 = fSplineEnergy[i - 1];
1203 x1 = fSplineEnergy[i - 2];
1204 y0 = fdNdxPlasmon[i - 1];
1205 yy1 = fdNdxPlasmon[i - 2];
1209 a = log10(yy1/y0)/log10(c);
1211 if(a < 20.) b = y0/pow(x0,a);
1214 if( a == 0 ) result += b*log(e0/x0);
1215 else result += y0*(e0*pow(d,a-1) - x0)/a;
1218 if( a == 0 ) fIntegralPlasmon[0] += b*log(e0/x0);
1219 else fIntegralPlasmon[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
1240 meanNumber = fIntegralPAIySection[1]*step;
1241 numOfCollisions =
G4Poisson(meanNumber);
1245 while(numOfCollisions)
1249 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ )
1251 if( position >= fIntegralPAIySection[iTransfer] )
break;
1253 loss += fSplineEnergy[iTransfer] ;
1276 meanNumber = fIntegralCerenkov[1]*step;
1277 numOfCollisions =
G4Poisson(meanNumber);
1281 while(numOfCollisions)
1285 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ )
1287 if( position >= fIntegralCerenkov[iTransfer] )
break;
1289 loss += fSplineEnergy[iTransfer] ;
1312 meanNumber = fIntegralPlasmon[1]*step;
1313 numOfCollisions =
G4Poisson(meanNumber);
1317 while(numOfCollisions)
1321 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ )
1323 if( position >= fIntegralPlasmon[iTransfer] )
break;
1325 loss += fSplineEnergy[iTransfer] ;
1338 G4String head =
"G4PAIySection::" + methodName +
"()";
1340 ed <<
"Wrong index " << i <<
" fSplineNumber= " << fSplineNumber;
1354 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.138890e+00, 1.157642e+00,
1355 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.261620e+00, 1.296942e+00,
1356 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.492800e+00, 1.559334e+00,
1357 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.928263e+00, 2.053589e+00,
1358 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.748522e+00, 2.984591e+00,
1359 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.293602e+00, 4.738274e+00,
1360 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.203990e+00, 8.041596e+00,
1361 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.268614e+01, 1.426390e+01,
1362 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.301259e+01, 2.598453e+01,
1363 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.246399e+01, 4.806208e+01,
1364 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.910361e+01, 8.964844e+01,
1365 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.481198e+02, 1.679826e+02,
1366 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.781221e+02, 3.155365e+02,
1367 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.230007e+02, 5.934765e+02,
1368 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.842662e+02, 1.117018e+03,
1369 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.853128e+03, 2.103186e+03,
1370 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.489760e+03, 3.960780e+03,
1371 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.572600e+03, 7.459837e+03,
1372 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.237959e+04, 1.405083e+04,
1373 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.331792e+04, 2.646595e+04,
1374 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.392189e+04, 4.985168e+04,
1375 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.273254e+04, 9.390219e+04,
static c2_factory< G4double > c2
G4long G4Poisson(G4double mean)
G4double SumOverIntervaldEdx(G4int intervalNumber)
std::ostringstream G4ExceptionDescription
G4double RutherfordIntegral(G4int intervalNumber, G4double limitLow, G4double limitHigh)
static const G4double fDelta
static const G4int fMaxSplineSize
void NormShift(G4double betaGammaSq)
static const G4double betaBohr
static const G4double fLorentzFactor[112]
G4double ImPartDielectricConst(G4int intervalNumber, G4double energy)
G4double SumOverInterCerenkov(G4int intervalNumber)
static const G4double cofBetaBohr
G4double GetDensity() const
void CallError(G4int i, const G4String &methodName) const
G4int GetMaxInterval() const
G4double PAIdNdxCerenkov(G4int intervalNumber, G4double betaGammaSq)
G4double GetSandiaMatTablePAI(G4int, G4int)
void ComputeLowEnergyCof(const G4Material *material)
const G4Element * GetElement(G4int iel) const
G4double SumOverBorderdEdx(G4int intervalNumber, G4double energy)
static const G4double betaBohr4
static G4int fNumberOfGammas
G4double SumOverBordPlasmon(G4int intervalNumber, G4double energy)
G4GLOB_DLL std::ostream G4cout
G4double GetStepEnergyLoss(G4double step)
G4double GetElectronDensity() const
void Initialize(const G4Material *material, G4double maxEnergyTransfer, G4double betaGammaSq, G4SandiaTable *)
static const G4double betaBohr2
G4double GetStepCerenkovLoss(G4double step)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
static const G4int fRefGammaNumber
G4double SumOverBorder(G4int intervalNumber, G4double energy)
void SplainPAI(G4double betaGammaSq)
static const G4double fError
G4double SumOverBordCerenkov(G4int intervalNumber, G4double energy)
size_t GetNumberOfElements() const
G4double RePartDielectricConst(G4double energy)
G4double GetStepPlasmonLoss(G4double step)
G4double DifPAIySection(G4int intervalNumber, G4double betaGammaSq)
G4double SumOverInterval(G4int intervalNumber)
G4double PAIdNdxPlasmon(G4int intervalNumber, G4double betaGammaSq)
void IntegralPAIySection()
G4double SumOverInterPlasmon(G4int intervalNumber)