Geant4  10.00.p02
G4PreCompoundIon.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4PreCompoundIon.cc 68028 2013-03-13 13:48:15Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4PreCompoundIon
34 //
35 // Author: V.Lara
36 //
37 // Modified:
38 // 10.02.2009 J. M. Quesada fixed bug in density level of light fragments
39 // 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
40 // use int Z and A and cleanup
41 //
42 
43 #include "G4PreCompoundIon.hh"
44 #include "G4PhysicalConstants.hh"
45 
48  G4VCoulombBarrier* aCoulombBarrier)
49  : G4PreCompoundFragment(part,aCoulombBarrier)
50 {
52  fact = 0.75*CLHEP::millibarn/(CLHEP::pi*r0*r0*r0);
53 }
54 
56 {}
57 
60  const G4Fragment& aFragment)
61 {
62  if ( !IsItPossible(aFragment) ) { return 0.0; }
63  G4double efinal = eKin + GetBindingEnergy();
64  //G4cout << "Efinal= " << efinal << " Ekin= " << eKin << G4endl;
65  if(efinal <= 0.0 ) { return 0.0; }
66 
67  G4double U = aFragment.GetExcitationEnergy();
68  G4int P = aFragment.GetNumberOfParticles();
69  G4int H = aFragment.GetNumberOfHoles();
70  G4int A = GetA();
71  G4int N = P + H;
72 
73  G4double g0 = (6.0/pi2)*aFragment.GetA_asInt()*theParameters->GetLevelDensity();
74  G4double g1 = (6.0/pi2)*GetRestA()*theParameters->GetLevelDensity();
75 
76  //JMQ 06/02/209 This is THE BUG that was killing cluster emission
77  // G4double gj = (6.0/pi2)*GetA() *
78  // G4PreCompoundParameters::GetAddress()->GetLevelDensity();
79 
80  G4double gj = g1;
81 
82  G4double A0 = G4double(P*P+H*H+P-3*H)/(4.0*g0);
83  G4double A1 = std::max(0.0,(A0*g0 + A*(A-2*P-1)*0.25)/g1);
84 
85  G4double E0 = U - A0;
86  //G4cout << "E0= " << E0 << G4endl;
87  if (E0 <= 0.0) { return 0.0; }
88 
89  G4double E1 = (std::max(0.0,GetMaximalKineticEnergy() - eKin - A1));
90 
91  G4double Aj = A*(A+1)/(4.0*gj);
92  G4double Ej = std::max(0.0,efinal - Aj);
93 
94  G4double rj = GetRj(P, aFragment.GetNumberOfCharged());
95  G4double xs = CrossSection(eKin);
96 
97  //G4cout << "rj= " << rj << " xs= " << xs << G4endl;
98 
99  // JMQ 10/02/09 reshaping of the formula (unnecessary std::pow elimitated)
100  /*
101  G4double r0 = theParameters->Getr0();
102  G4double pA = (3.0/4.0) * std::sqrt(std::max(0.0, 2.0/(GetReducedMass()*
103  (eKin+GetBindingEnergy()))))/(pi * r0 * r0 *r0* GetRestA())*
104  eKin*CrossSection(eKin)*millibarn*
105  CoalescenceFactor(aFragment.GetA_asInt()) * FactorialFactor(N,P)*
106  GetRj(aFragment.GetNumberOfParticles(), aFragment.GetNumberOfCharged());
107 
108  G4double pB = std::pow((g1*E1)/(g0*E0),N-GetA()-1.0)*(g1/g0);
109  G4double pC = std::pow((gj*Ej)/(g0*E0),GetA()-1.0)*(gj/g0)/E0;
110  pA *= pB * pC;
111  */
112 
113  G4double pA = fact*eKin*xs*rj
114  * CoalescenceFactor(aFragment.GetA_asInt()) * FactorialFactor(N,P)
115  * std::sqrt(2.0/(GetReducedMass()*efinal))
116  * g4pow->powN(g1*E1/(g0*E0), N-A-1)
117  * g4pow->powN(gj*Ej/(g0*E0), A-1)*gj*g1/(g0*g0*E0*GetRestA());
118 
119  return pA;
120 }
virtual G4double CrossSection(G4double ekin)=0
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:125
virtual ~G4PreCompoundIon()
G4double GetMaximalKineticEnergy() const
G4double GetReducedMass() const
const G4double pi
virtual G4double ProbabilityDistributionFunction(G4double eKin, const G4Fragment &aFragment)
G4int GetA() const
G4int GetNumberOfParticles() const
Definition: G4Fragment.hh:325
G4bool IsItPossible(const G4Fragment &aFragment) const
int G4int
Definition: G4Types.hh:78
G4double GetBindingEnergy() const
G4int GetNumberOfHoles() const
Definition: G4Fragment.hh:345
G4int GetA_asInt() const
Definition: G4Fragment.hh:238
virtual G4double FactorialFactor(G4int N, G4int P)=0
static const G4double A[nN]
virtual G4double CoalescenceFactor(G4int A)=0
virtual G4double GetRj(G4int NumberParticles, G4int NumberCharged)=0
T max(const T t1, const T t2)
brief Return the largest of the two arguments
static const double millibarn
Definition: G4SIunits.hh:96
G4int GetRestA() const
G4PreCompoundParameters * theParameters
double G4double
Definition: G4Types.hh:76
G4int GetNumberOfCharged() const
Definition: G4Fragment.hh:330
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:255