Geant4  10.00.p02
G4ChipsPionMinusElasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4ChipsPionMinusElasticXS.cc 70680 2013-06-04 07:51:03Z gcosmo $
28 //
29 //
30 // G4 Physics class: G4ChipsPionMinusElasticXS for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the elastic process.
36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37 // -------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4PionMinus.hh"
45 #include "G4Nucleus.hh"
46 #include "G4ParticleTable.hh"
47 #include "G4NucleiProperties.hh"
48 #include "G4IonTable.hh"
49 
50 // factory
51 #include "G4CrossSectionFactory.hh"
52 //
54 
55 G4ChipsPionMinusElasticXS::G4ChipsPionMinusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
56 {
57  lPMin=-8.; //Min tabulated logarithmMomentum(D)
58  lPMax= 8.; //Max tabulated logarithmMomentum(D)
59  dlnP=(lPMax-lPMin)/nLast;//LogStep inTheTable(D)
60  onlyCS=true;//Flag toCalcul OnlyCS(not Si/Bi)(L)
61  lastSIG=0.; //Last calculated cross section (L)
62  lastLP=-10.;//Last log(mom_of IncidentHadron)(L)
63  lastTM=0.; //Last t_maximum (L)
64  theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
65  theS1=0.; //TheLastMantissa of 1st difr.Max(L)
66  theB1=0.; //TheLastSlope of 1st difruct.Max(L)
67  theS2=0.; //TheLastMantissa of 2nd difr.Max(L)
68  theB2=0.; //TheLastSlope of 2nd difruct.Max(L)
69  theS3=0.; //TheLastMantissa of 3d difr. Max(L)
70  theB3=0.; //TheLastSlope of 3d difruct. Max(L)
71  theS4=0.; //TheLastMantissa of 4th difr.Max(L)
72  theB4=0.; //TheLastSlope of 4th difruct.Max(L)
73  lastTZ=0; // Last atomic number of the target
74  lastTN=0; // Last # of neutrons in the target
75  lastPIN=0.; // Last initialized max momentum
76  lastCST=0; // Elastic cross-section table
77  lastPAR=0; // Parameters ForFunctionCalculation
78  lastSST=0; // E-dep of SqardSlope of 1st difMax
79  lastS1T=0; // E-dep of mantissa of 1st dif.Max
80  lastB1T=0; // E-dep of the slope of 1st difMax
81  lastS2T=0; // E-dep of mantissa of 2nd difrMax
82  lastB2T=0; // E-dep of the slope of 2nd difMax
83  lastS3T=0; // E-dep of mantissa of 3d difr.Max
84  lastB3T=0; // E-dep of the slope of 3d difrMax
85  lastS4T=0; // E-dep of mantissa of 4th difrMax
86  lastB4T=0; // E-dep of the slope of 4th difMax
87  lastN=0; // The last N of calculated nucleus
88  lastZ=0; // The last Z of calculated nucleus
89  lastP=0.; // LastUsed in CrossSection Momentum
90  lastTH=0.; // Last threshold momentum
91  lastCS=0.; // Last value of the Cross Section
92  lastI=0; // The last position in the DAMDB
93 }
94 
96 {
97  std::vector<G4double*>::iterator pos;
98  for (pos=CST.begin(); pos<CST.end(); pos++)
99  { delete [] *pos; }
100  CST.clear();
101  for (pos=PAR.begin(); pos<PAR.end(); pos++)
102  { delete [] *pos; }
103  PAR.clear();
104  for (pos=SST.begin(); pos<SST.end(); pos++)
105  { delete [] *pos; }
106  SST.clear();
107  for (pos=S1T.begin(); pos<S1T.end(); pos++)
108  { delete [] *pos; }
109  S1T.clear();
110  for (pos=B1T.begin(); pos<B1T.end(); pos++)
111  { delete [] *pos; }
112  B1T.clear();
113  for (pos=S2T.begin(); pos<S2T.end(); pos++)
114  { delete [] *pos; }
115  S2T.clear();
116  for (pos=B2T.begin(); pos<B2T.end(); pos++)
117  { delete [] *pos; }
118  B2T.clear();
119  for (pos=S3T.begin(); pos<S3T.end(); pos++)
120  { delete [] *pos; }
121  S3T.clear();
122  for (pos=B3T.begin(); pos<B3T.end(); pos++)
123  { delete [] *pos; }
124  B3T.clear();
125  for (pos=S4T.begin(); pos<S4T.end(); pos++)
126  { delete [] *pos; }
127  S4T.clear();
128  for (pos=B4T.begin(); pos<B4T.end(); pos++)
129  { delete [] *pos; }
130  B4T.clear();
131 }
132 
133 
135  const G4Element*,
136  const G4Material*)
137 {
138  G4ParticleDefinition* particle = Pt->GetDefinition();
139  if (particle == G4PionMinus::PionMinus() ) return true;
140  return false;
141 }
142 
143 // The main member function giving the collision cross section (P is in IU, CS is in mb)
144 // Make pMom in independent units ! (Now it is MeV)
146  const G4Isotope*,
147  const G4Element*,
148  const G4Material*)
149 {
150  G4double pMom=Pt->GetTotalMomentum();
151  G4int tgN = A - tgZ;
152 
153  return GetChipsCrossSection(pMom, tgZ, tgN, -212);
154 }
155 
157 {
158  static G4ThreadLocal std::vector <G4int> *colN_G4MT_TLS_ = 0 ; if (!colN_G4MT_TLS_) colN_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colN = *colN_G4MT_TLS_; // Vector of N for calculated nuclei (isotops)
159  static G4ThreadLocal std::vector <G4int> *colZ_G4MT_TLS_ = 0 ; if (!colZ_G4MT_TLS_) colZ_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colZ = *colZ_G4MT_TLS_; // Vector of Z for calculated nuclei (isotops)
160  static G4ThreadLocal std::vector <G4double> *colP_G4MT_TLS_ = 0 ; if (!colP_G4MT_TLS_) colP_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colP = *colP_G4MT_TLS_; // Vector of last momenta for the reaction
161  static G4ThreadLocal std::vector <G4double> *colTH_G4MT_TLS_ = 0 ; if (!colTH_G4MT_TLS_) colTH_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colTH = *colTH_G4MT_TLS_; // Vector of energy thresholds for the reaction
162  static G4ThreadLocal std::vector <G4double> *colCS_G4MT_TLS_ = 0 ; if (!colCS_G4MT_TLS_) colCS_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colCS = *colCS_G4MT_TLS_; // Vector of last cross sections for the reaction
163  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
164 
165  G4double pEn=pMom;
166  G4bool fCS = false;
167  onlyCS=fCS;
168 
169  G4bool in=false; // By default the isotope must be found in the AMDB
170  lastP = 0.; // New momentum history (nothing to compare with)
171  lastN = tgN; // The last N of the calculated nucleus
172  lastZ = tgZ; // The last Z of the calculated nucleus
173  lastI = colN.size(); // Size of the Associative Memory DB in the heap
174  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
175  { // The nucleus with projPDG is found in AMDB
176  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
177  {
178  lastI=i;
179  lastTH =colTH[i]; // Last THreshold (A-dependent)
180  if(pEn<=lastTH)
181  {
182  return 0.; // Energy is below the Threshold value
183  }
184  lastP =colP [i]; // Last Momentum (A-dependent)
185  lastCS =colCS[i]; // Last CrossSect (A-dependent)
186  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
187  if(lastP == pMom) // Do not recalculate
188  {
189  CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // Update param's only
190  return lastCS*millibarn; // Use theLastCS
191  }
192  in = true; // This is the case when the isotop is found in DB
193  // Momentum pMom is in IU ! @@ Units
194  lastCS=CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // read & update
195  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
196  {
197  lastTH=pEn;
198  }
199  break; // Go out of the LOOP with found lastI
200  }
201  } // End of attampt to find the nucleus in DB
202  if(!in) // This nucleus has not been calculated previously
203  {
205  lastCS=CalculateCrossSection(fCS,0,lastI,-211,lastZ,lastN,pMom);//calculate&create
206  if(lastCS<=0.)
207  {
208  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
209  if(pEn>lastTH)
210  {
211  lastTH=pEn;
212  }
213  }
214  colN.push_back(tgN);
215  colZ.push_back(tgZ);
216  colP.push_back(pMom);
217  colTH.push_back(lastTH);
218  colCS.push_back(lastCS);
219  return lastCS*millibarn;
220  } // End of creation of the new set of parameters
221  else
222  {
223  colP[lastI]=pMom;
224  colCS[lastI]=lastCS;
225  }
226  return lastCS*millibarn;
227 }
228 
229 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
230 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
232  G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
233 {
234  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
235  static G4ThreadLocal std::vector <G4double> *PIN_G4MT_TLS_ = 0 ; if (!PIN_G4MT_TLS_) PIN_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &PIN = *PIN_G4MT_TLS_; // Vector of max initialized log(P) in the table
236  // *** End of Static Definitions (Associative Memory Data Base) ***
237  G4double pMom=pIU/GeV; // All calculations are in GeV
238  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
239  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
240  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
241  {
242  if(F<0) // the AMDB must be loded
243  {
244  lastPIN = PIN[I]; // Max log(P) initialised for this table set
245  lastPAR = PAR[I]; // Pointer to the parameter set
246  lastCST = CST[I]; // Pointer to the total sross-section table
247  lastSST = SST[I]; // Pointer to the first squared slope
248  lastS1T = S1T[I]; // Pointer to the first mantissa
249  lastB1T = B1T[I]; // Pointer to the first slope
250  lastS2T = S2T[I]; // Pointer to the second mantissa
251  lastB2T = B2T[I]; // Pointer to the second slope
252  lastS3T = S3T[I]; // Pointer to the third mantissa
253  lastB3T = B3T[I]; // Pointer to the rhird slope
254  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
255  lastB4T = B4T[I]; // Pointer to the 4-th slope
256  }
257  if(lastLP>lastPIN && lastLP<lPMax)
258  {
259  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
260  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
261  }
262  }
263  else // This isotope wasn't initialized => CREATE
264  {
265  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
266  lastPAR[nLast]=0; // Initialization for VALGRIND
267  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
268  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
269  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
270  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
271  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
272  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
273  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
274  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
275  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
276  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
277  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
278  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
279  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
280  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
281  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
282  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
283  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
284  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
285  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
286  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
287  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
288  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
289  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
290  } // End of creation/update of the new set of parameters and tables
291  // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
292  if(lastLP>lastPIN && lastLP<lPMax)
293  {
294  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
295  }
296  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
297  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
298  {
299  if(lastLP==lastPIN)
300  {
301  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
302  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
303  if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
304  lastSIG = lastCST[blast];
305  if(!onlyCS) // Skip the differential cross-section parameters
306  {
307  theSS = lastSST[blast];
308  theS1 = lastS1T[blast];
309  theB1 = lastB1T[blast];
310  theS2 = lastS2T[blast];
311  theB2 = lastB2T[blast];
312  theS3 = lastS3T[blast];
313  theB3 = lastB3T[blast];
314  theS4 = lastS4T[blast];
315  theB4 = lastB4T[blast];
316  }
317  }
318  else
319  {
320  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
321  G4int blast=static_cast<int>(shift); // the lower bin number
322  if(blast<0) blast=0;
323  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
324  shift-=blast; // step inside the unit bin
325  G4int lastL=blast+1; // the upper bin number
326  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
327  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
328  if(!onlyCS) // Skip the differential cross-section parameters
329  {
330  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
331  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
332  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
333  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
334  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
335  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
336  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
337  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
338  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
339  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
340  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
341  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
342  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
343  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
344  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
345  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
346  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
347  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
348  }
349  }
350  }
351  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
352  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
353  return lastSIG;
354 }
355 
356 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
358  G4int tgZ, G4int tgN)
359 {
360  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
361  static const G4double pwd=2727;
362  const G4int n_pimpel=38; // #of parameters for pp-elastic (<nPoints=128)
363  // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10-11-12-
364  G4double pimp_el[n_pimpel]={1.27,1.53,.0676,3.5,.36,.04,.017,.0025,.0557,2.4,7.,.7,.6,
365  .05,5.,74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,
366  .46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
367  // -13-14--15--16--17-18--19--20--21- -22- -23- -24- -25- -26-
368  // -27--28- -29- -30- -31- -32- -33- -34- -35- -36- -37-
369  if(PDG ==-211)
370  {
371  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
372  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
373  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
374  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
375  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
376  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
377  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
378  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
379  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
380  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
381  //
382  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
383  {
384  if ( tgZ == 1 && tgN == 0 )
385  {
386  for (G4int ip=0; ip<n_pimpel; ip++) lastPAR[ip]=pimp_el[ip]; // PiMinus+P
387  }
388  else
389  {
390  G4double a=tgZ+tgN;
391  G4double sa=std::sqrt(a);
392  G4double ssa=std::sqrt(sa);
393  G4double asa=a*sa;
394  G4double a2=a*a;
395  G4double a3=a2*a;
396  G4double a4=a3*a;
397  G4double a5=a4*a;
398  G4double a6=a4*a2;
399  G4double a7=a6*a;
400  G4double a8=a7*a;
401  G4double a9=a8*a;
402  G4double a10=a5*a5;
403  G4double a12=a6*a6;
404  G4double a14=a7*a7;
405  G4double a16=a8*a8;
406  G4double a17=a16*a;
407  //G4double a20=a16*a4;
408  G4double a32=a16*a16;
409  // Reaction cross-section parameters (pel=peh_fit.f)
410  lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1
411  lastPAR[1]=a/(1./4.4+1./a); // p2
412  lastPAR[2]=.22/std::pow(a,.33); // p3
413  lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4
414  lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2); // p5
415  lastPAR[5]=0.; // p6 not used
416  lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7
417  lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8
418  lastPAR[8]=0.; // p9 not used
419  // @@ the differential cross-section is parameterized separately for A>6 & A<7
420  if(a<6.5)
421  {
422  G4double a28=a16*a12;
423  // The main pre-exponent (pel_sg)
424  lastPAR[ 9]=4000*a; // p1
425  lastPAR[10]=1.2e7*a8+380*a17; // p2
426  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
427  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
428  lastPAR[13]=.28*a; // p5
429  lastPAR[14]=1.2*a2+2.3; // p6
430  lastPAR[15]=3.8/a; // p7
431  // The main slope (pel_sl)
432  lastPAR[16]=.01/(1.+.0024*a5); // p1
433  lastPAR[17]=.2*a; // p2
434  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
435  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
436  // The main quadratic (pel_sh)
437  lastPAR[20]=2.25*a3; // p1
438  lastPAR[21]=18.; // p2
439  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
440  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
441  // The 1st max pre-exponent (pel_qq)
442  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
443  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
444  lastPAR[26]=.0006*a3; // p3
445  // The 1st max slope (pel_qs)
446  lastPAR[27]=10.+4.e-8*a12*a; // p1
447  lastPAR[28]=.114; // p2
448  lastPAR[29]=.003; // p3
449  lastPAR[30]=2.e-23; // p4
450  // The effective pre-exponent (pel_ss)
451  lastPAR[31]=1./(1.+.0001*a8); // p1
452  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
453  lastPAR[33]=.03; // p3
454  // The effective slope (pel_sb)
455  lastPAR[34]=a/2; // p1
456  lastPAR[35]=2.e-7*a4; // p2
457  lastPAR[36]=4.; // p3
458  lastPAR[37]=64./a3; // p4
459  // The gloria pre-exponent (pel_us)
460  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
461  lastPAR[39]=20.*std::exp(.45*asa); // p2
462  lastPAR[40]=7.e3+2.4e6/a5; // p3
463  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
464  lastPAR[42]=2.5*a; // p5
465  // The gloria slope (pel_ub)
466  lastPAR[43]=920.+.03*a8*a3; // p1
467  lastPAR[44]=93.+.0023*a12; // p2
468  }
469  else
470  {
471  G4double p1a10=2.2e-28*a10;
472  G4double r4a16=6.e14/a16;
473  G4double s4a16=r4a16*r4a16;
474  // a24
475  // a36
476  // The main pre-exponent (peh_sg)
477  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
478  lastPAR[10]=.06*std::pow(a,.6); // p2
479  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
480  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
481  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
482  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
483  // The main slope (peh_sl)
484  lastPAR[15]=400./a12+2.e-22*a9; // p1
485  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
486  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
487  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
488  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
489  lastPAR[20]=9.+100./a; // p6
490  // The main quadratic (peh_sh)
491  lastPAR[21]=.002*a3+3.e7/a6; // p1
492  lastPAR[22]=7.e-15*a4*asa; // p2
493  lastPAR[23]=9000./a4; // p3
494  // The 1st max pre-exponent (peh_qq)
495  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
496  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
497  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
498  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
499  // The 1st max slope (peh_qs)
500  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
501  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
502  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
503  lastPAR[31]=100./asa; // p4
504  // The 2nd max pre-exponent (peh_ss)
505  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
506  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
507  lastPAR[34]=1.3+3.e5/a4; // p3
508  lastPAR[35]=500./(a2+50.)+3; // p4
509  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
510  // The 2nd max slope (peh_sb)
511  lastPAR[37]=.4*asa+3.e-9*a6; // p1
512  lastPAR[38]=.0005*a5; // p2
513  lastPAR[39]=.002*a5; // p3
514  lastPAR[40]=10.; // p4
515  // The effective pre-exponent (peh_us)
516  lastPAR[41]=.05+.005*a; // p1
517  lastPAR[42]=7.e-8/sa; // p2
518  lastPAR[43]=.8*sa; // p3
519  lastPAR[44]=.02*sa; // p4
520  lastPAR[45]=1.e8/a3; // p5
521  lastPAR[46]=3.e32/(a32+1.e32); // p6
522  // The effective slope (peh_ub)
523  lastPAR[47]=24.; // p1
524  lastPAR[48]=20./sa; // p2
525  lastPAR[49]=7.e3*a/(sa+1.); // p3
526  lastPAR[50]=900.*sa/(1.+500./a3); // p4
527  }
528  // Parameter for lowEnergyNeutrons
529  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
530  }
531  lastPAR[nLast]=pwd;
532  // and initialize the zero element of the table
533  G4double lp=lPMin; // ln(momentum)
534  G4bool memCS=onlyCS; // ??
535  onlyCS=false;
536  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
537  onlyCS=memCS;
538  lastSST[0]=theSS;
539  lastS1T[0]=theS1;
540  lastB1T[0]=theB1;
541  lastS2T[0]=theS2;
542  lastB2T[0]=theB2;
543  lastS3T[0]=theS3;
544  lastB3T[0]=theB3;
545  lastS4T[0]=theS4;
546  lastB4T[0]=theB4;
547  }
548  if(LP>ILP)
549  {
550  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
551  if(ini<0) ini=0;
552  if(ini<nPoints)
553  {
554  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
555  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
556  if(fin>=ini)
557  {
558  G4double lp=0.;
559  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
560  {
561  lp=lPMin+ip*dlnP; // ln(momentum)
562  G4bool memCS=onlyCS;
563  onlyCS=false;
564  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
565  onlyCS=memCS;
566  lastSST[ip]=theSS;
567  lastS1T[ip]=theS1;
568  lastB1T[ip]=theB1;
569  lastS2T[ip]=theS2;
570  lastB2T[ip]=theB2;
571  lastS3T[ip]=theS3;
572  lastB3T[ip]=theB3;
573  lastS4T[ip]=theS4;
574  lastB4T[ip]=theB4;
575  }
576  return lp;
577  }
578  else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG
579  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
580  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
581  }
582  else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG
583  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
584  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
585  }
586  }
587  else
588  {
589  // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
590  // <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl;
591  // throw G4QException("G4ChipsPionMinusElasticXS::GetPTables:onlyPipA implemented");
593  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
594  << ", while it is defined only for PDG=-211 (pi-)" << G4endl;
595  G4Exception("G4ChipsPionMinusElasticXS::GetPTables()", "HAD_CHPS_0000",
596  FatalException, ed);
597  }
598  return ILP;
599 }
600 
601 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
603 {
604  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
605  static const G4double third=1./3.;
606  static const G4double fifth=1./5.;
607  static const G4double sevth=1./7.;
608  if(PDG!=-211)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExT:PDG="<<PDG<<G4endl;
609  if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
610  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
611  G4double q2=0.;
612  if(tgZ==1 && tgN==0) // ===> p+p=p+p
613  {
614  G4double E1=lastTM*theB1;
615  G4double R1=(1.-std::exp(-E1));
616  G4double E2=lastTM*theB2;
617  G4double R2=(1.-std::exp(-E2*E2*E2));
618  G4double E3=lastTM*theB3;
619  G4double R3=(1.-std::exp(-E3));
620  G4double I1=R1*theS1/theB1;
621  G4double I2=R2*theS2;
622  G4double I3=R3*theS3;
623  G4double I12=I1+I2;
624  G4double rand=(I12+I3)*G4UniformRand();
625  if (rand<I1 )
626  {
627  G4double ran=R1*G4UniformRand();
628  if(ran>1.) ran=1.;
629  q2=-std::log(1.-ran)/theB1;
630  }
631  else if(rand<I12)
632  {
633  G4double ran=R2*G4UniformRand();
634  if(ran>1.) ran=1.;
635  q2=-std::log(1.-ran);
636  if(q2<0.) q2=0.;
637  q2=std::pow(q2,third)/theB2;
638  }
639  else
640  {
641  G4double ran=R3*G4UniformRand();
642  if(ran>1.) ran=1.;
643  q2=-std::log(1.-ran)/theB3;
644  }
645  }
646  else
647  {
648  G4double a=tgZ+tgN;
650  G4double R1=(1.-std::exp(-E1));
651  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
652  G4double tm2=lastTM*lastTM;
653  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
654  if(a>6.5)E2*=tm2; // for heavy nuclei
655  G4double R2=(1.-std::exp(-E2));
656  G4double E3=lastTM*theB3;
657  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
658  G4double R3=(1.-std::exp(-E3));
659  G4double E4=lastTM*theB4;
660  G4double R4=(1.-std::exp(-E4));
661  G4double I1=R1*theS1;
662  G4double I2=R2*theS2;
663  G4double I3=R3*theS3;
664  G4double I4=R4*theS4;
665  G4double I12=I1+I2;
666  G4double I13=I12+I3;
667  G4double rand=(I13+I4)*G4UniformRand();
668  if(rand<I1)
669  {
670  G4double ran=R1*G4UniformRand();
671  if(ran>1.) ran=1.;
672  q2=-std::log(1.-ran)/theB1;
673  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
674  }
675  else if(rand<I12)
676  {
677  G4double ran=R2*G4UniformRand();
678  if(ran>1.) ran=1.;
679  q2=-std::log(1.-ran)/theB2;
680  if(q2<0.) q2=0.;
681  if(a<6.5) q2=std::pow(q2,third);
682  else q2=std::pow(q2,fifth);
683  }
684  else if(rand<I13)
685  {
686  G4double ran=R3*G4UniformRand();
687  if(ran>1.) ran=1.;
688  q2=-std::log(1.-ran)/theB3;
689  if(q2<0.) q2=0.;
690  if(a>6.5) q2=std::pow(q2,sevth);
691  }
692  else
693  {
694  G4double ran=R4*G4UniformRand();
695  if(ran>1.) ran=1.;
696  q2=-std::log(1.-ran)/theB4;
697  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
698  }
699  }
700  if(q2<0.) q2=0.;
701  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
702  if(q2>lastTM)
703  {
704  q2=lastTM;
705  }
706  return q2*GeVSQ;
707 }
708 
709 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
711 {
712  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
713  if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetSlope:onlCS=true"<<G4endl;
714  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
715  if(PDG !=-211)
716  {
717  // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
718  // <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl;
719  // throw G4QException("G4ChipsPionMinusElasticXS::GetSlope: pipA are implemented");
721  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
722  << ", while it is defined only for PDG=-211" << G4endl;
723  G4Exception("G4ChipsPionMinusElasticXS::GetSlope()", "HAD_CHPS_0000",
724  FatalException, ed);
725  }
726  if(theB1<0.) theB1=0.;
727  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
728  return theB1/GeVSQ;
729 }
730 
731 // Returns half max(Q2=-t) in independent units (MeV^2)
733 {
734  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
735  return lastTM*HGeVSQ;
736 }
737 
738 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
740  G4int tgN)
741 {
742  if(PDG!=-211)G4cout<<"*Warn*G4ChipsPionMinusElasticXS::GetTabV: PDG="<<PDG<<G4endl;
743  if(tgZ<0 || tgZ>92)
744  {
745  G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
746  return 0.;
747  }
748  G4int iZ=tgZ-1; // Z index
749  if(iZ<0)
750  {
751  iZ=0; // conversion of the neutron target to the proton target
752  tgZ=1;
753  tgN=0;
754  }
755  G4double p=std::exp(lp); // momentum
756  G4double sp=std::sqrt(p); // sqrt(p)
757  G4double p2=p*p;
758  G4double p3=p2*p;
759  G4double p4=p3*p;
760  if ( tgZ == 1 && tgN == 0 ) // PiMin+P
761  {
762  G4double dl2=lp-lastPAR[14];
763  theSS=lastPAR[37];
764  theS1=(lastPAR[15]+lastPAR[16]*dl2*dl2)/(1.+lastPAR[17]/p4/p)+
765  (lastPAR[18]/p2+lastPAR[19]*p)/(p4+lastPAR[20]*sp);
766  theB1=lastPAR[21]*std::pow(p,lastPAR[22])/(1.+lastPAR[23]/p3);
767  theS2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]*p);
768  theB2=lastPAR[27]+lastPAR[28]/(p4+lastPAR[29]/sp);
769  theS3=lastPAR[30]+lastPAR[31]/(p4*p4+lastPAR[32]*p2+lastPAR[33]);
770  theB3=lastPAR[34]+lastPAR[35]/(p4+lastPAR[36]);
771  theS4=0.;
772  theB4=0.;
773  // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
774  G4double lr=lp+lastPAR[0]; // lr
775  G4double ld=lp-lastPAR[14];
776  G4double dl3=lp+lastPAR[4]; // lm
777  G4double dl4=lp-lastPAR[6]; // lh
778 //G4cout<<"lastPAR[13] "<<lastPAR[13]<<" lastPAR[6] "<<lastPAR[6]<<" lastPAR[7] "<<lastPAR[7]<<G4endl;
779  return lastPAR[1]/(lr*lr+lastPAR[2])+
780  (lastPAR[8]*ld*ld+lastPAR[9]+lastPAR[10]/sp)/(1.+lastPAR[11]/p4)+
781  lastPAR[12]/(dl3*dl3+lastPAR[5])+lastPAR[13]/(dl4*dl4+lastPAR[7]);
782  }
783  else
784  {
785  G4double p5=p4*p;
786  G4double p6=p5*p;
787  G4double p8=p6*p2;
788  G4double p10=p8*p2;
789  G4double p12=p10*p2;
790  G4double p16=p8*p8;
791  //G4double p24=p16*p8;
792  G4double dl=lp-5.;
793  G4double a=tgZ+tgN;
794  G4double pah=std::pow(p,a/2);
795  G4double pa=pah*pah;
796  G4double pa2=pa*pa;
797  if(a<6.5)
798  {
799  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
800  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
801  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
802  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
803  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
804  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
805  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
806  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
807  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
808  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
809  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
810  }
811  else
812  {
813  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
814  lastPAR[13]/(p5+lastPAR[14]/p16);
815  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
816  lastPAR[17]/(1.+lastPAR[18]/p4);
817  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
818  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
819  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
820  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
821  lastPAR[33]/(1.+lastPAR[34]/p6);
822  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
823  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
824  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
825  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
826  }
827  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
828  // p1 p2 p3
829  return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
830  lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
831  // p4 p5 p7 p8
832  }
833  return 0.;
834 } // End of GetTableValues
835 
836 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
838  G4double pP)
839 {
840  static const G4double mPi= G4PionMinus::PionMinus()->GetPDGMass()*.001; // MeV to GeV
841  static const G4double mPi2= mPi*mPi;
842 
843  G4double pP2=pP*pP; // squared momentum of the projectile
844  if(tgZ || tgN>-1) // ---> pipA
845  {
846  G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
847 
848  G4double dmt=mt+mt;
849  G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam mds
850  return dmt*dmt*pP2/mds;
851  }
852  else
853  {
855  ed << "PDG = " << PDG << ",Z = " << tgZ << ",N = " << tgN
856  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
857  G4Exception("G4ChipsPionMinusElasticXS::GetQ2max()", "HAD_CHPS_0000",
858  FatalException, ed);
859  return 0;
860  }
861 }
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:449
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
static const G4double a4
G4ParticleDefinition * GetDefinition() const
G4double a
Definition: TRTMaterials.hh:39
#define G4ThreadLocal
Definition: tls.hh:52
int G4int
Definition: G4Types.hh:78
G4double GetTotalMomentum() const
G4IonTable * GetIonTable() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
G4double GetQ2max(G4int pPDG, G4int tgZ, G4int tgN, G4double pP)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
bool G4bool
Definition: G4Types.hh:79
static const double GeV
Definition: G4SIunits.hh:196
static const G4double A[nN]
static const G4double a3
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4_DECLARE_XS_FACTORY(G4ChipsPionMinusElasticXS)
G4double GetPDGMass() const
static G4ParticleTable * GetParticleTable()
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static const double gigaelectronvolt
Definition: G4SIunits.hh:188
static const double millibarn
Definition: G4SIunits.hh:96
G4double GetPTables(G4double lpP, G4double lPm, G4int PDG, G4int tZ, G4int tN)
G4double GetSlope(G4int tZ, G4int tN, G4int pPDG)
#define G4endl
Definition: G4ios.hh:61
G4double GetTabValues(G4double lp, G4int pPDG, G4int tgZ, G4int tgN)
G4double CalculateCrossSection(G4bool CS, G4int F, G4int I, G4int pPDG, G4int Z, G4int N, G4double pP)
static const G4double a5
double G4double
Definition: G4Types.hh:76
static const G4double pos
static const G4double a2