71 G4cout <<
"MicroElec Elastic model is constructed " <<
G4endl
86 std::map< G4String,G4MicroElecCrossSectionDataSet*,std::less<G4String> >::iterator
pos;
106 G4cout <<
"Calling G4MicroElecElasticModel::Initialise()" <<
G4endl;
112 G4cout <<
"G4MicroElecElasticModel: low energy limit increased from " <<
119 G4cout <<
"G4MicroElecElasticModel: high energy limit decreased from " <<
128 G4String fileElectron(
"microelec/sigma_elastic_e_Si");
145 char *path = getenv(
"G4LEDATA");
153 std::ostringstream eFullFileName;
154 eFullFileName << path <<
"/microelec/sigmadiff_elastic_e_Si.dat";
155 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
157 if (!eDiffCrossSection)
158 G4Exception(
"G4MicroElecElasticModel::Initialise",
"em0003",
FatalException,
"Missing data file: /microelec/sigmadiff_elastic_e_Si.dat");
162 while(!eDiffCrossSection.eof())
166 eDiffCrossSection>>tDummy>>eDummy;
172 eVecm[tDummy].push_back(0.);
178 if (!eDiffCrossSection.eof()) eDiffCrossSectionData[tDummy][eDummy]*=scaleFactor;
180 if (eDummy !=
eVecm[tDummy].back())
eVecm[tDummy].push_back(eDummy);
187 G4cout <<
"Loaded cross section files for MicroElec Elastic model" <<
G4endl;
191 G4cout <<
"MicroElec Elastic model is initialized " << G4endl
214 G4cout <<
"Calling CrossSectionPerVolume() of G4MicroElecElasticModel" <<
G4endl;
232 std::map< G4String,G4MicroElecCrossSectionDataSet*,std::less<G4String> >::iterator
pos;
245 G4Exception(
"G4MicroElecElasticModel::ComputeCrossSectionPerVolume",
"em0002",
FatalException,
"Model not applicable to particle type.");
253 G4cout <<
" - Cross section per Si atom (cm^-1)=" << sigma*density/(1./
cm) << G4endl;
271 G4cout <<
"Calling SampleSecondaries() of G4MicroElecElasticModel" <<
G4endl;
292 G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
294 xDir *= std::cos(phi);
295 yDir *= std::sin(phi);
297 G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
327 std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
328 std::vector<double>::iterator t1 = t2-1;
330 std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), integrDiff);
331 std::vector<double>::iterator e11 = e12-1;
333 std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), integrDiff);
334 std::vector<double>::iterator e21 = e22-1;
343 xs11 = eDiffCrossSectionData[valueT1][valueE11];
344 xs12 = eDiffCrossSectionData[valueT1][valueE12];
345 xs21 = eDiffCrossSectionData[valueT2][valueE21];
346 xs22 = eDiffCrossSectionData[valueT2][valueE22];
350 if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0)
return (0.);
352 theta = QuadInterpolator( valueE11, valueE12,
372 G4double value = std::exp(d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
384 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
385 G4double b = std::log10(xs2) - a*std::log10(e2);
386 G4double sigma = a*std::log10(e) + b;
387 G4double value = (std::pow(10.,sigma));
413 integrdiff = uniformRand;
419 cosTheta= std::cos(theta*
pi/180);
G4double LogLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
static G4Electron * ElectronDefinition()
G4double QuadInterpolator(G4double e11, G4double e12, G4double e21, G4double e22, G4double x11, G4double x12, G4double x21, G4double x22, G4double t1, G4double t2, G4double t, G4double e)
G4double LowEnergyLimit() const
G4Material * FindOrBuildMaterial(const G4String &name, G4bool isotopes=true, G4bool warning=false)
G4MicroElecElasticModel(const G4ParticleDefinition *p=0, const G4String &nam="MicroElecElasticModel")
G4double Theta(G4ParticleDefinition *aParticleDefinition, G4double k, G4double integrDiff)
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double HighEnergyLimit() const
std::vector< double > eTdummyVec
G4double lowEnergyLimitOfModel
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
TriDimensionMap eDiffCrossSectionData
static G4NistManager * Instance()
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
const G4String & GetParticleName() const
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetHighEnergyLimit(G4double)
G4GLOB_DLL std::ostream G4cout
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
G4double LinLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
const G4ThreeVector & GetMomentumDirection() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double FindValue(G4double e, G4int componentId=0) const
virtual G4bool LoadData(const G4String &argFileName)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
G4double GetTotNbOfAtomsPerVolume() const
virtual ~G4MicroElecElasticModel()
G4ParticleChangeForGamma * fParticleChangeForGamma
const G4Material * GetBaseMaterial() const
G4double RandomizeCosTheta(G4double k)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeTrackStatus(G4TrackStatus status)
void SetLowEnergyLimit(G4double)
static const G4double pos
G4ParticleChangeForGamma * GetParticleChangeForGamma()