Geant4  10.00.p02
G4INCLTransmissionChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28 // Davide Mancusi, CEA
29 // Alain Boudard, CEA
30 // Sylvie Leray, CEA
31 // Joseph Cugnon, University of Liege
32 //
33 #define INCLXX_IN_GEANT4_MODE 1
34 
35 #include "globals.hh"
36 
38 
39 namespace G4INCL {
40 
41  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle)
42  : theNucleus(nucleus), theParticle(particle),
43  refraction(false),
44  pOutMag(0.),
45  kineticEnergyOutside(initializeKineticEnergyOutside()),
46  cosRefractionAngle(1.)
47  {}
48 
49  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double TOut)
50  : theNucleus(nucleus), theParticle(particle),
51  refraction(false),
52  pOutMag(0.),
53  kineticEnergyOutside(TOut),
54  cosRefractionAngle(1.)
55  {}
56 
57  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double kOut, const G4double cosR)
58  : theNucleus(nucleus), theParticle(particle),
59  refraction(true),
60  pOutMag(kOut),
61  kineticEnergyOutside(initializeKineticEnergyOutside()),
62  cosRefractionAngle(cosR)
63  {}
64 
66 
68  // The particle energy outside the nucleus. Subtract the nuclear
69  // potential from the kinetic energy when leaving the nucleus
72  - theParticle->getMass();
73 
74  // Correction for real masses
75  const G4int AParent = theNucleus->getA();
76  const G4int ZParent = theNucleus->getZ();
77  const G4double theQValueCorrection = theParticle->getEmissionQValueCorrection(AParent,ZParent);
78  TOut += theQValueCorrection;
79  return TOut;
80  }
81 
83 
84  // Use the table mass in the outside world
87 
88  if(refraction) {
89  // Change the momentum direction
90  // The magnitude of the particle momentum outside the nucleus will be
91  // fixed by the kineticEnergyOutside variable. This is done in order to
92  // avoid numerical inaccuracies.
94  const G4double r2 = position.mag2();
96  if(r2>0.)
97  normal = position / std::sqrt(r2);
98 
99  const ThreeVector &momentum = theParticle->getMomentum();
100 
101  const ThreeVector pOut = normal * (pOutMag * cosRefractionAngle) + momentum - normal * normal.dot(momentum);
102 // assert(std::fabs(pOut.mag()-pOutMag)<1.e-5);
103 
104  theParticle->setMomentum(pOut);
105  }
106  // Scaling factor for the particle momentum
109  }
110 
112  FinalState *fs = new FinalState;
113  G4double initialEnergy = 0.0;
114  initialEnergy = theParticle->getEnergy() - theParticle->getPotentialEnergy();
115 
116  // Correction for real masses
117  const G4int AParent = theNucleus->getA();
118  const G4int ZParent = theNucleus->getZ();
119  initialEnergy += theParticle->getTableMass() - theParticle->getMass()
120  + theParticle->getEmissionQValueCorrection(AParent,ZParent);
121 
122  particleLeaves();
123 
124  fs->setTotalEnergyBeforeInteraction(initialEnergy);
125  fs->addOutgoingParticle(theParticle); // We write the particle down as outgoing
126  return fs;
127  }
128 }
G4int getA() const
Returns the baryon number.
TransmissionChannel(Nucleus *n, Particle *p)
G4double getMass() const
Get the cached particle mass.
G4double dot(const ThreeVector &v) const
Dot product.
void particleLeaves()
Modify particle that leaves the nucleus.
const G4INCL::ThreeVector & getMomentum() const
Get the momentum vector.
G4double getEnergy() const
Get the energy of the particle in MeV.
int G4int
Definition: G4Types.hh:78
G4double mag2() const
Get the square of the length.
G4double getPotentialEnergy() const
Get the particle potential energy.
void setEnergy(G4double energy)
Set the energy of the particle in MeV.
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:77
const G4double cosRefractionAngle
Cosine of the refraction angle.
Final state of an interaction.
const G4bool refraction
True if refraction should be applied.
const G4double pOutMag
Momentum of the particle outside the nucleus.
G4int getZ() const
Returns the charge number.
void addOutgoingParticle(Particle *p)
void setPotentialEnergy(G4double v)
Set the particle potential energy.
void setTotalEnergyBeforeInteraction(G4double E)
void setTableMass()
Set the mass of the Particle to its table mass.
const G4double kineticEnergyOutside
Kinetic energy of the particle outside the nucleus.
int position
Definition: filter.cc:7
const G4INCL::ThreeVector & getPosition() const
Set the position vector.
virtual G4double getTableMass() const
Get the tabulated particle mass.
double G4double
Definition: G4Types.hh:76
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
G4double initializeKineticEnergyOutside()
Kinetic energy of the transmitted particle.
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
Set the momentum vector.