73 crossBornPerElectron(0),
113 2.0*electron_mass_c2*sqrt(1.0 + 0.5*
lowKinEnergy/electron_mass_c2);
115 2.0*electron_mass_c2*sqrt(1.0 + 0.5*
highKinEnergy/electron_mass_c2);
142 <<
" epeak(GeV)= " << peakKinEnergy/
GeV
163 G4cout <<
"G4eeToHadronsModel: Cross secsions per electron"
164 <<
" nbins= " <<
nbins
175 <<
" crossBorn(nb)= " << s2/
nanobarn
215 sqrt(1.0 + 0.5*kineticEnergy/electron_mass_c2);
232 G4double e = 2.0*electron_mass_c2*sqrt(1.0 + 0.5*t/electron_mass_c2);
244 G4int np = newp->size();
245 for(
G4int j=0; j<np; j++) {
254 newp->push_back(gamma);
268 G4double L = 2.0*log(e/electron_mass_c2);
269 G4double bt = 2.0*fine_structure_const*(L - 1.0)/
pi;
271 G4double del = 1. + fine_structure_const*(1.5*L +
pi*
pi/3. -2.)/
pi;
275 cs += s1*(del*pow(x1,bt) - bt*(x1 - 0.25*x1*x1));
280 G4double w2 = bt*(del*pow(x2,btm1) - 1.0 + 0.5*x2);
283 for(
G4int j=i-2; j>=0; j--) {
287 w1 = bt*(del*pow(x1,btm1) - 1.0 + 0.5*x1);
288 cs += 0.5*(x1 - x2)*(w2*s2 + w1*s1);
308 G4double L = 2.0*log(e/electron_mass_c2);
309 G4double bt = 2.0*fine_structure_const*(L - 1.)/
pi;
311 G4double del = 1. + fine_structure_const*(1.5*L +
pi*
pi/3. -2.)/
pi;
317 *(del*pow(x0,bt) - bt*(x0 - 0.25*x0*x0));
326 G4double w1 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
336 G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
345 G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
346 grej =
max(grej,s2*w2);
356 G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
362 G4cout <<
"G4DynamicParticle* G4eeToHadronsModel:WARNING "
363 << f <<
" > " << grej <<
" majorant is`small!"
virtual ~G4eeToHadronsModel()
G4double LowEnergy() const
G4double LowEnergyLimit() const
G4double GetValue(G4double theEnergy, G4bool &isOutRange) const
static const double nanobarn
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
void SetLowEnergy(G4double val)
G4double HighEnergyLimit() const
G4eeToHadronsModel(G4Vee2hadrons *, G4int ver=0, const G4String &nam="eeToHadrons")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double maxEnergy=DBL_MAX)
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4PhysicsVector * PhysicsVector(G4double, G4double) const =0
size_t GetVectorLength() const
G4double GetLowEdgeEnergy(size_t binNumber) const
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
void SetHighEnergyLimit(G4double)
G4PhysicsVector * crossPerElectron
G4GLOB_DLL std::ostream G4cout
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, G4double, const G4ThreeVector &)=0
G4double GetElectronDensity() const
const G4ThreeVector & GetMomentumDirection() const
void PutValue(size_t index, G4double theValue)
G4PhysicsVector * crossBornPerElectron
G4LorentzVector Get4Momentum() const
virtual G4double PeakEnergy() const =0
void Set4Momentum(const G4LorentzVector &momentum)
void ComputeCMCrossSectionPerElectron()
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4DynamicParticle * GenerateCMPhoton(G4double)
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4double HighEnergy() const
G4ParticleDefinition * theGamma
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
virtual G4double ComputeCrossSection(G4double) const =0
void SetLowEnergyLimit(G4double)
CLHEP::HepLorentzVector G4LorentzVector