57 :
G4VEmModel(nam),fParticleChange(0),fParticle(0),
58 logAtomicCrossSection(0),
59 fEffectiveCharge(0),fMaterialInvScreeningRadius(0),
60 fScreeningFunction(0),isInitialised(false),fLocalTable(false)
116 G4cout <<
"Calling G4PenelopeGammaConversionModel::Initialise()" <<
G4endl;
159 G4int iZ = (
G4int) theElementVector->at(j)->GetZ();
172 G4cout <<
"Penelope Gamma Conversion model v2008 is initialized " << G4endl
193 G4cout <<
"Calling G4PenelopeGammaConversionModel::InitialiseLocal()" <<
G4endl;
257 ed <<
"Unable to retrieve the cross section table for Z=" << iZ <<
G4endl;
258 ed <<
"This can happen only in Unit Tests or via G4EmCalculator" <<
G4endl;
259 G4Exception(
"G4PenelopeGammaConversionModel::ComputeCrossSectionPerAtom()",
263 G4AutoLock lock(&PenelopeGammaConversionModelMutex);
274 cs = std::exp(logXS);
277 G4cout <<
"Gamma conversion cross section at " << energy/
MeV <<
" MeV for Z=" << Z <<
304 G4cout <<
"Calling SamplingSecondaries() of G4PenelopeGammaConversionModel" <<
G4endl;
341 ed <<
"Unable to allocate the EffectiveCharge data for " <<
343 ed <<
"This can happen only in Unit Tests" <<
G4endl;
344 G4Exception(
"G4PenelopeGammaConversionModel::SampleSecondaries()",
348 G4AutoLock lock(&PenelopeGammaConversionModelMutex);
355 G4double eki = electron_mass_c2/photonEnergy;
364 G4double alz = effC*fine_structure_const;
366 G4double F00=(-1.774-1.210e1*alz+1.118e1*alz*alz)*T
367 +(8.523+7.326
e1*alz-4.441
e1*alz*alz)*T*T
368 -(1.352e1+1.211e2*alz-9.641e1*alz*alz)*T*T*T
369 +(8.946+6.205
e1*alz-6.341
e1*alz*alz)*T*T*T*T;
392 eps = 0.5-xr*std::pow(std::abs(ru2m1),1./3.);
394 eps = 0.5+xr*std::pow(ru2m1,1./3.);
418 G4double electronTotEnergy = eps*photonEnergy;
419 G4double positronTotEnergy = (1.0-
eps)*photonEnergy;
424 G4double electronKineEnergy =
std::max(0.,electronTotEnergy - electron_mass_c2) ;
426 G4double kk = std::sqrt(electronKineEnergy*(electronKineEnergy+2.*electron_mass_c2));
427 costheta_el = (costheta_el*electronTotEnergy+kk)/(electronTotEnergy+costheta_el*kk);
429 G4double dirX_el = std::sqrt(1.-costheta_el*costheta_el) * std::cos(phi_el);
430 G4double dirY_el = std::sqrt(1.-costheta_el*costheta_el) * std::sin(phi_el);
434 G4double positronKineEnergy =
std::max(0.,positronTotEnergy - electron_mass_c2) ;
436 kk = std::sqrt(positronKineEnergy*(positronKineEnergy+2.*electron_mass_c2));
437 costheta_po = (costheta_po*positronTotEnergy+kk)/(positronTotEnergy+costheta_po*kk);
439 G4double dirX_po = std::sqrt(1.-costheta_po*costheta_po) * std::cos(phi_po);
440 G4double dirY_po = std::sqrt(1.-costheta_po*costheta_po) * std::sin(phi_po);
448 if (electronKineEnergy > 0.0)
450 G4ThreeVector electronDirection ( dirX_el, dirY_el, dirZ_el);
451 electronDirection.rotateUz(photonDirection);
455 fvect->push_back(electron);
459 localEnergyDeposit += electronKineEnergy;
460 electronKineEnergy = 0;
465 if (positronKineEnergy < 0.0)
467 localEnergyDeposit += positronKineEnergy;
468 positronKineEnergy = 0;
471 positronDirection.rotateUz(photonDirection);
473 positronDirection, positronKineEnergy);
474 fvect->push_back(positron);
481 G4cout <<
"-----------------------------------------------------------" <<
G4endl;
482 G4cout <<
"Energy balance from G4PenelopeGammaConversion" <<
G4endl;
483 G4cout <<
"Incoming photon energy: " << photonEnergy/
keV <<
" keV" <<
G4endl;
484 G4cout <<
"-----------------------------------------------------------" <<
G4endl;
485 if (electronKineEnergy)
486 G4cout <<
"Electron (explicitely produced) " << electronKineEnergy/
keV <<
" keV"
488 if (positronKineEnergy)
489 G4cout <<
"Positron (not at rest) " << positronKineEnergy/
keV <<
" keV" <<
G4endl;
490 G4cout <<
"Rest masses of e+/- " << 2.0*electron_mass_c2/
keV <<
" keV" <<
G4endl;
491 if (localEnergyDeposit)
492 G4cout <<
"Local energy deposit " << localEnergyDeposit/
keV <<
" keV" <<
G4endl;
493 G4cout <<
"Total final state: " << (electronKineEnergy+positronKineEnergy+
494 localEnergyDeposit+2.0*electron_mass_c2)/
keV <<
496 G4cout <<
"-----------------------------------------------------------" <<
G4endl;
500 G4double energyDiff = std::fabs(electronKineEnergy+positronKineEnergy+
501 localEnergyDeposit+2.0*electron_mass_c2-photonEnergy);
502 if (energyDiff > 0.05*
keV)
503 G4cout <<
"Warning from G4PenelopeGammaConversion: problem with energy conservation: "
504 << (electronKineEnergy+positronKineEnergy+
505 localEnergyDeposit+2.0*electron_mass_c2)/
keV
506 <<
" keV (final) vs. " << photonEnergy/
keV <<
" keV (initial)" << G4endl;
516 G4Exception(
"G4PenelopeGammaConversionModel::ReadDataFile()",
521 G4cout <<
"G4PenelopeGammaConversionModel::ReadDataFile()" <<
G4endl;
522 G4cout <<
"Going to read Gamma Conversion data files for Z=" << Z <<
G4endl;
525 char* path = getenv(
"G4LEDATA");
529 "G4PenelopeGammaConversionModel - G4LEDATA environment variable not set!";
530 G4Exception(
"G4PenelopeGammaConversionModel::ReadDataFile()",
538 std::ostringstream ost;
540 ost << path <<
"/penelope/pairproduction/pdgpp" << Z <<
".p08";
542 ost << path <<
"/penelope/pairproduction/pdgpp0" << Z <<
".p08";
543 std::ifstream file(ost.str().c_str());
546 G4String excep =
"G4PenelopeGammaConversionModel - data file " +
547 G4String(ost.str()) +
" not found!";
548 G4Exception(
"G4PenelopeGammaConversionModel::ReadDataFile()",
556 while( getline(file, line) )
563 file.open(ost.str().c_str());
574 ed <<
"Corrupted data file for Z=" << Z <<
G4endl;
575 G4Exception(
"G4PenelopeGammaConversionModel::ReadDataFile()",
581 for (
size_t i=0;i<ndata;i++)
589 theVec->
PutValue(i,std::log(ene),std::log(xs));
596 ed <<
"Problem with allocation of logAtomicCrossSection data table " <<
G4endl;
597 G4Exception(
"G4PenelopeGammaConversionModel::ReadDataFile()",
612 G4double temp[99] = {1.2281e+02,7.3167e+01,6.9228e+01,6.7301e+01,6.4696e+01,
613 6.1228e+01,5.7524e+01,5.4033e+01,5.0787e+01,4.7851e+01,4.6373e+01,
614 4.5401e+01,4.4503e+01,4.3815e+01,4.3074e+01,4.2321e+01,4.1586e+01,
615 4.0953e+01,4.0524e+01,4.0256e+01,3.9756e+01,3.9144e+01,3.8462e+01,
616 3.7778e+01,3.7174e+01,3.6663e+01,3.5986e+01,3.5317e+01,3.4688e+01,
617 3.4197e+01,3.3786e+01,3.3422e+01,3.3068e+01,3.2740e+01,3.2438e+01,
618 3.2143e+01,3.1884e+01,3.1622e+01,3.1438e+01,3.1142e+01,3.0950e+01,
619 3.0758e+01,3.0561e+01,3.0285e+01,3.0097e+01,2.9832e+01,2.9581e+01,
620 2.9411e+01,2.9247e+01,2.9085e+01,2.8930e+01,2.8721e+01,2.8580e+01,
621 2.8442e+01,2.8312e+01,2.8139e+01,2.7973e+01,2.7819e+01,2.7675e+01,
622 2.7496e+01,2.7285e+01,2.7093e+01,2.6911e+01,2.6705e+01,2.6516e+01,
623 2.6304e+01,2.6108e+01,2.5929e+01,2.5730e+01,2.5577e+01,2.5403e+01,
624 2.5245e+01,2.5100e+01,2.4941e+01,2.4790e+01,2.4655e+01,2.4506e+01,
625 2.4391e+01,2.4262e+01,2.4145e+01,2.4039e+01,2.3922e+01,2.3813e+01,
626 2.3712e+01,2.3621e+01,2.3523e+01,2.3430e+01,2.3331e+01,2.3238e+01,
627 2.3139e+01,2.3048e+01,2.2967e+01,2.2833e+01,2.2694e+01,2.2624e+01,
628 2.2545e+01,2.2446e+01,2.2358e+01,2.2264e+01};
631 for (
G4int i=0;i<99;i++)
658 zeff = (*elementVector)[0]->GetZ();
666 for (
G4int i=0;i<nElements;i++)
668 G4double Zelement = (*elementVector)[i]->GetZ();
669 G4double Aelement = (*elementVector)[i]->GetAtomicMassAmu();
670 atot += Aelement*fractionVector[i];
671 zeff += Zelement*Aelement*fractionVector[i];
676 intZ = (
G4int) (zeff+0.25);
689 G4double alz = fine_structure_const*zeff;
691 G4double fc = alzSquared*(0.202059-alzSquared*
693 (0.00835-alzSquared*(0.00201-alzSquared*
695 (0.00012-alzSquared*0.00003)))))
696 +1.0/(alzSquared+1.0));
704 std::pair<G4double,G4double> myPair(0,0);
715 G4cout <<
"Average Z for material " << material->
GetName() <<
" = " <<
717 G4cout <<
"Effective radius for material " << material->
GetName() <<
" = " <<
720 G4cout <<
"Screening parameters F0 for material " << material->
GetName() <<
" = " <<
721 f0a <<
"," << f0b <<
G4endl;
728 std::pair<G4double,G4double>
736 std::pair<G4double,G4double> result(0.,0.);
746 f2 += 2.0*BSquared*(4.0-a0-3.0*std::log((1.0+BSquared)/BSquared));
void ReadDataFile(const G4int Z)
G4double LowEnergyLimit() const
std::vector< G4Element * > G4ElementVector
void PutValue(size_t binNumber, G4double binValue, G4double dataValue)
std::ostringstream G4ExceptionDescription
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double HighEnergyLimit() const
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
const G4String & GetName() const
G4PenelopeGammaConversionModel(const G4ParticleDefinition *p=0, const G4String &processName="PenConversion")
std::pair< G4double, G4double > GetScreeningFunctions(G4double)
static const G4double eps
const G4ElementVector * GetElementVector() const
#define G4MUTEX_INITIALIZER
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetHighEnergyLimit(G4double)
const G4double * GetVecNbOfAtomsPerVolume() const
void InitializeScreeningFunctions(const G4Material *)
G4GLOB_DLL std::ostream G4cout
G4ParticleChangeForGamma * fParticleChange
size_t GetTableSize() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
const G4ThreeVector & GetMomentumDirection() const
G4double Value(G4double theEnergy, size_t &lastidx) const
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
std::map< G4int, G4PhysicsFreeVector * > * logAtomicCrossSection
const G4ParticleDefinition * fParticle
G4double GetTotNbOfAtomsPerVolume() const
static G4ProductionCutsTable * GetProductionCutsTable()
static G4Positron * Positron()
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::map< const G4Material *, std::pair< G4double, G4double > > * fScreeningFunction
std::map< const G4Material *, G4double > * fEffectiveCharge
std::map< const G4Material *, G4double > * fMaterialInvScreeningRadius
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double energy(const ThreeVector &p, const G4double m)
G4double fIntrinsicLowEnergyLimit
static G4Electron * Electron()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetParticle(const G4ParticleDefinition *)
size_t GetNumberOfElements() const
G4double fIntrinsicHighEnergyLimit
void ProposeTrackStatus(G4TrackStatus status)
G4double fAtomicScreeningRadius[99]
void InitializeScreeningRadii()
G4ThreeVector G4ParticleMomentum
virtual ~G4PenelopeGammaConversionModel()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
const G4Material * GetMaterial() const