100       G4cout << 
"G4LEpp:ApplyYourself: incident particle: " 
  103              << 
", Px = " << Px/
GeV << 
" GeV/c" 
  104              << 
", Py = " << Py/
GeV << 
" GeV/c" 
  105              << 
", Pz = " << Pz/
GeV << 
" GeV/c" << 
G4endl;
 
  107              << 
", kinetic energy = " << ek/
GeV << 
" GeV" 
  108              << 
", mass = " << E0/
GeV << 
" GeV" 
  109              << 
", charge = " << Q << 
G4endl;
 
  121       E0 = std::sqrt(std::fabs(E02));
 
  122       if (E02 < 0)E0 *= -1;
 
  126              << 
", mass = " << E0/
GeV << 
" GeV" 
  127              << 
", charge = " << Q << 
G4endl;
 
  136       G4int midBin = (je1 + je2)/2;
 
  137       if (ek < 
elab[midBin])
 
  141     } 
while (je2 - je1 > 1); 
 
  151     G4double b = sig[je1][0] - rc*elab[je1];
 
  156                                  << ke1 << 
" " << ke2 << 
" "  
  157                                  << sigint1 << 
" " << sigint2 << 
G4endl;
 
  160       G4int midBin = (ke1 + ke2)/2;
 
  161       dsig = sig[je2][midBin] - sig[je1][midBin];
 
  163       b = sig[je1][midBin] - rc*elab[je1];
 
  165       if (sample < sigint) {
 
  174                                   << sigint1 << 
" " << sigint2 << 
G4endl;
 
  175     } 
while (ke2 - ke1 > 1); 
 
  177     dsig = sigint2 - sigint1;
 
  179     b = ke1 - rc*sigint1;
 
  182     if (theta < 0.) { theta = 0.; }
 
  185       G4cout << 
"   energy bin " << je1 << 
" energy=" << elab[je1] << 
G4endl;
 
  197     G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
 
  204     G4double p = std::sqrt(px*px + py*py + pz*pz);
 
  209       G4cout << 
"  particle  1 momentum in CM " << px/
GeV << 
" " << py/
GeV << 
" " 
  215     G4double pxnew = p*std::sin(theta)*std::cos(phi);
 
  216     G4double pynew = p*std::sin(theta)*std::sin(phi);
 
  220     if (px*px + py*py > 0) {
 
  221       G4double cost, sint, ph, cosp, sinp;
 
  223       sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2;
 
  224       py < 0 ? ph = 3*halfpi : ph = halfpi;
 
  225       if (std::fabs(px) > 0.000001*
GeV) ph = std::atan2(py,px);
 
  228       px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
 
  229       py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
 
  230       pz = (-sint*pxnew                  + cost*pznew);
 
  240       G4cout << 
"  particle 1 momentum in CM " << px/
GeV << 
" " << py/
GeV << 
" " 
  251     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
 
  254       G4cout << 
"  betaCM " << betaCMx << 
" " << betaCMy << 
" " 
  255              << betaCMz << 
" " << betaCM << 
G4endl;
 
  272     PA[4] = std::sqrt(M1*M1 + p*p);
 
  274     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
 
  275     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
 
  277     PB[1] = PA[1] + BPGAM  * BETA[1];
 
  278     PB[2] = PA[2] + BPGAM  * BETA[2];
 
  279     PB[3] = PA[3] + BPGAM  * BETA[3];
 
  280     PB[4] = (PA[4] - BETPA) * BETA[4];
 
  291     PA[4] = std::sqrt(M2*M2 + p*p);
 
  293     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
 
  294     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
 
  296     PB[1] = PA[1] + BPGAM  * BETA[1];
 
  297     PB[2] = PA[2] + BPGAM  * BETA[2];
 
  298     PB[3] = PA[3] + BPGAM  * BETA[3];
 
  299     PB[4] = (PA[4] - BETPA) * BETA[4];
 
  304       G4cout << 
"  particle 1 momentum in LAB "  
  307       G4cout << 
"  particle 2 momentum in LAB "  
  310       G4cout << 
"  TOTAL momentum in LAB "  
static const G4float Sig[NENERGY][NANGLE]
 
void SetMomentum(const G4ThreeVector &momentum)
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
G4double GetTotalEnergy() const 
 
static const G4float SigCoul[NENERGYC][NANGLE]
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4ParticleDefinition * GetDefinition() const 
 
G4DynamicParticle * ReturnTargetParticle() const 
 
const G4String & GetParticleName() const 
 
void SetCoulombEffects(G4int State)
 
G4double GetTotalMomentum() const 
 
void SetMinEnergy(G4double anEnergy)
 
static const G4float Elab[NENERGY]
 
G4GLOB_DLL std::ostream G4cout
 
const G4ParticleDefinition * GetDefinition() const 
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double GetKineticEnergy() const 
 
static G4Proton * Proton()
 
static const G4float ElabCoul[NENERGYC]
 
static const G4double A[nN]
 
const G4LorentzVector & Get4Momentum() const 
 
void SetEnergyChange(G4double anEnergy)
 
G4double GetPDGMass() const 
 
static const double degree
 
void SetMaxEnergy(const G4double anEnergy)
 
G4HadFinalState theParticleChange
 
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
 
G4double GetPDGCharge() const 
 
void SetMomentumChange(const G4ThreeVector &aV)
 
void AddSecondary(G4DynamicParticle *aP)
 
G4ThreeVector GetMomentum() const 
 
G4double GetTotalMomentum() const 
 
G4double GetTotalEnergy() const 
 
const G4float * sig[NANGLE]