81 twoln10(2.0*
G4Log(10.0)),
135 if(cutEnergy < tmax) {
137 G4double xmin = cutEnergy/kineticEnergy;
139 G4double tau = kineticEnergy/electron_mass_c2;
142 G4double beta2 = tau*(tau + 2)/gamma2;
147 G4double gg = (2.0*gam - 1.0)/gamma2;
148 cross = ((xmax - xmin)*(1.0 - gg + 1.0/(xmin*xmax)
149 + 1.0/((1.0-xmin)*(1.0 - xmax)))
150 - gg*
G4Log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2;
164 cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2
165 - 0.5*b3*(xmin + xmax)
166 + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0)
167 - b1*
G4Log(xmax/xmin);
170 cross *= twopi_mc2_rcl2/kineticEnergy;
232 if (kineticEnergy < th) { tkin = th; }
234 G4double tau = tkin/electron_mass_c2;
241 eexc /= electron_mass_c2;
250 dedx =
G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2
251 +
G4Log((tau-d)*d) + tau/(tau-d)
252 + (0.5*d*d + (2.0*tau + 1.)*
G4Log(1. - d/tau))/gamma2;
261 dedx =
G4Log(2.0*(tau + 2.0)/eexc2) +
G4Log(tau*d)
262 - beta2*(tau + 2.0*d - y*(3.0*d2
263 + y*(d - d3 + y*(d2 - tau*d3 +
d4))))/tau;
271 dedx *= twopi_mc2_rcl2*electronDensity/beta2;
272 if (dedx < 0.0) { dedx = 0.0; }
276 if (kineticEnergy < th) {
277 x = kineticEnergy/th;
278 if(x > 0.25) { dedx /= sqrt(x); }
279 else { dedx *= 1.4*sqrt(x)/(0.1 + x); }
300 tmax = 0.5*kineticEnergy;
302 tmax = kineticEnergy;
304 if(maxEnergy < tmax) { tmax = maxEnergy; }
305 if(tmin >= tmax) {
return; }
318 G4double gg = (2.0*gam - 1.0)/gamma2;
320 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg + (1.0 - gg*y)/(y*y));
324 x = xmin*xmax/(xmin*(1.0 - q) + xmax*q);
326 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - gg*y)/(y*y));
351 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + y*b2 - xmin*
b1)*beta2;
354 x = xmin*xmax/(xmin*(1.0 - q) + xmax*q);
356 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*
b1)*beta2;
369 G4double deltaKinEnergy = x * kineticEnergy;
383 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
384 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
386 if(cost > 1.0) { cost = 1.0; }
387 G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
391 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ;
398 vdp->push_back(delta);
401 kineticEnergy -= deltaKinEnergy;
403 finalP = finalP.unit();
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
G4IonisParamMat * GetIonisation() const
G4ParticleChangeForLoss * GetParticleChangeForLoss()
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4bool isElectron(G4int ityp)
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy)
void SetParticle(const G4ParticleDefinition *p)
G4VEmAngularDistribution * GetAngularDistribution()
G4MollerBhabhaModel(const G4ParticleDefinition *p=0, const G4String &nam="MollerBhabha")
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
G4double GetTotalMomentum() const
G4ParticleChangeForLoss * fParticleChange
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
G4double GetElectronDensity() const
G4bool UseAngularGeneratorFlag() const
const G4ParticleDefinition * particle
const G4ThreeVector & GetMomentumDirection() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
G4double G4Log(G4double x)
G4double GetTotNbOfAtomsPerVolume() const
G4ParticleDefinition * theElectron
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy)
G4double DensityCorrection(G4double x)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4double energy(const ThreeVector &p, const G4double m)
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
void SetAngularDistribution(G4VEmAngularDistribution *)
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4double GetMeanExcitationEnergy() const
static G4Electron * Electron()
virtual ~G4MollerBhabhaModel()
G4ThreeVector GetMomentum() const
const G4Material * GetMaterial() const
G4int SelectRandomAtomNumber(const G4Material *)