Geant4  10.00.p02
G4INCLCrossSectionsINCL46.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28 // Davide Mancusi, CEA
29 // Alain Boudard, CEA
30 // Sylvie Leray, CEA
31 // Joseph Cugnon, University of Liege
32 //
33 #define INCLXX_IN_GEANT4_MODE 1
34 
35 #include "globals.hh"
36 
38 #include "G4INCLKinematicsUtils.hh"
39 #include "G4INCLParticleTable.hh"
40 #include "G4INCLLogger.hh"
41 // #include <cassert>
42 
43 namespace G4INCL {
44 
45 /* G4double elasticNNHighEnergy(const G4double momentum) {
46  return 77.0/(momentum + 1.5);
47  }
48 
49  G4double elasticProtonNeutron(const G4double momentum) {
50  if(momentum < 0.450) {
51  const G4double alp = std::log(momentum);
52  return 6.3555*std::exp(-3.2481*alp-0.377*alp*alp);
53  } else if(momentum >= 0.450 && momentum < 0.8) {
54  return (33.0 + 196.0 * std::sqrt(std::pow(std::abs(momentum - 0.95), 5)));
55  } else if(momentum > 2.0) {
56  return elasticNNHighEnergy(momentum);
57  } else {
58  return 31.0/std::sqrt(momentum);
59  }
60  }
61 
62  G4double elasticProtonProtonOrNeutronNeutron(const G4double momentum)
63  {
64  if(momentum < 0.440) {
65  return 34.0*std::pow(momentum/0.4, -2.104);
66  } else if(momentum < 0.8 && momentum >= 0.440) {
67  return (23.5 + 1000.0*std::pow(momentum-0.7, 4));
68  } else if(momentum < 2.0) {
69  return (1250.0/(50.0 + momentum) - 4.0*std::pow(momentum-1.3, 2));
70  } else {
71  return elasticNNHighEnergy(momentum);
72  }
73  }
74 
75  G4double elasticNN(Particle const * const p1, Particle const * const p2) {
76  G4double momentum = 0.0;
77  momentum = 0.001 * KinematicsUtils::momentumInLab(p1, p2);
78  if((p1->getType() == Proton && p2->getType() == Proton) ||
79  (p1->getType() == Neutron && p2->getType() == Neutron)) {
80  return elasticProtonProtonOrNeutronNeutron(momentum);
81  } else if((p1->getType() == Proton && p2->getType() == Neutron) ||
82  (p1->getType() == Neutron && p2->getType() == Proton)) {
83  return elasticProtonNeutron(momentum);
84  } else {
85  INCL_ERROR("CrossSectionsINCL46::elasticNN: Bad input!" << std::endl
86  << p1->print() << p2->print() << std::endl);
87  }
88  return 0.0;
89  }:*/
90 
91  G4double CrossSectionsINCL46::elasticNNLegacy(Particle const * const part1, Particle const * const part2) {
92  G4double scale = 1.0;
93 
94 
97  G4double sel = 0.0;
98 
99  /* The NN cross section is parametrised as a function of the lab momentum
100  * of one of the nucleons. For NDelta or DeltaDelta, the physical
101  * assumption is that the cross section is the same as NN *for the same
102  * total CM energy*. Thus, we calculate s from the particles involved, and
103  * we convert this value to the lab momentum of a nucleon *as if this were
104  * an NN collision*.
105  */
106  const G4double s = KinematicsUtils::squareTotalEnergyInCM(part1, part2);
108 
109  G4double p1=0.001*plab;
110  if(plab > 2000.) goto sel13;
111  if(part1->isNucleon() && part2->isNucleon())
112  goto sel1;
113  else
114  goto sel3;
115 sel1: if (i == 0) goto sel2;
116 sel3: if (plab < 800.) goto sel4;
117  if (plab > 2000.) goto sel13;
118  sel=(1250./(50.+p1)-4.*std::pow(p1-1.3, 2))*scale;
119  goto sel100;
120  return sel;
121 sel4: if (plab < 440.) {
122  sel=34.*std::pow(p1/0.4, (-2.104))*scale;
123  } else {
124  sel=(23.5+1000.*std::pow(p1-0.7, 4))*scale;
125  }
126  goto sel100;
127  return sel;
128 sel13: sel=77./(p1+1.5)*scale;
129  goto sel100;
130  return sel;
131 sel2: if (plab < 800.) goto sel11;
132  if (plab > 2000.) goto sel13;
133  sel=31./std::sqrt(p1)*scale;
134  goto sel100;
135  return sel;
136 sel11: if (plab < 450.) {
137  G4double alp=std::log(p1);
138  sel=6.3555*std::exp(-3.2481*alp-0.377*alp*alp)*scale;
139  } else {
140  sel=(33.+196.*std::sqrt(std::pow(std::abs(p1-0.95),5)))*scale;
141  }
142 
143 sel100: return sel;
144  }
145 
147  G4double xs = 0.0;
148 // assert(isospin==-2 || isospin==0 || isospin==2);
149 
150  const G4double momentumGeV = 0.001 * pLab;
151  if(pLab < 800.0) {
152  return 0.0;
153  }
154 
155  if(isospin==2 || isospin==-2) { // pp, nn
156  if(pLab >= 2000.0) {
157  xs = (41.0 + (60.0*momentumGeV - 54.0)*std::exp(-1.2*momentumGeV) - 77.0/(momentumGeV + 1.5));
158  } else if(pLab >= 1500.0 && pLab < 2000.0) {
159  xs = (41.0 + 60.0*(momentumGeV - 0.9)*std::exp(-1.2*momentumGeV) - 1250.0/(momentumGeV+50.0)+ 4.0*std::pow(momentumGeV - 1.3, 2));
160  } else if(pLab < 1500.0) {
161  xs = (23.5 + 24.6/(1.0 + std::exp(-10.0*momentumGeV + 12.0))
162  -1250.0/(momentumGeV +50.0)+4.0*std::pow(momentumGeV - 1.3,2));
163  }
164  } else if(isospin==0) { // pn
165  if(pLab >= 2000.0) {
166  xs = (42.0 - 77.0/(momentumGeV + 1.5));
167  } else if(pLab >= 1000.0 && pLab < 2000.0) {
168  xs = (24.2 + 8.9*momentumGeV - 31.1/std::sqrt(momentumGeV));
169  } else if(pLab < 1000.0) {
170  xs = (33.0 + 196.0*std::sqrt(std::pow(std::abs(momentumGeV - 0.95),5))
171  -31.1/std::sqrt(momentumGeV));
172  }
173  }
174 
175  if(xs < 0.0) return 0.0;
176  else return xs;
177  }
178 
180  // HE and LE pi- p and pi+ n
181  if(x <= 1750.0) {
182  return -2.33730e-06*std::pow(x, 3)+1.13819e-02*std::pow(x,2)
183  -1.83993e+01*x+9893.4;
184  } else if(x > 1750.0 && x <= 2175.0) {
185  return 1.13531e-06*std::pow(x, 3)-6.91694e-03*std::pow(x, 2)
186  +1.39907e+01*x-9360.76;
187  } else {
188  return -3.18087*std::log(x)+52.9784;
189  }
190  }
191 
193  // HE pi- p and pi+ n
194  if(x <= 1475.0) {
195  return 0.00120683*(x-1372.52)*(x-1372.52)+26.2058;
196  } else if(x > 1475.0 && x <= 1565.0) {
197  return 1.15873e-05*x*x+49965.6/((x-1519.59)*(x-1519.59)+2372.55);
198  } else if(x > 1565.0 && x <= 2400.0) {
199  return 34.0248+43262.2/((x-1681.65)*(x-1681.65)+1689.35);
200  } else if(x > 2400.0 && x <= 7500.0) {
201  return 3.3e-7*(x-7500.0)*(x-7500.0)+24.5;
202  } else {
203  return 24.5;
204  }
205  }
206 
207  G4double CrossSectionsINCL46::total(Particle const * const p1, Particle const * const p2) {
208  G4double inelastic = 0.0;
209  if(p1->isNucleon() && p2->isNucleon()) {
210  inelastic = deltaProduction(p1, p2);
211  } else if((p1->isNucleon() && p2->isDelta()) ||
212  (p1->isDelta() && p2->isNucleon())) {
213  inelastic = recombination(p1, p2);
214  } else if((p1->isNucleon() && p2->isPion()) ||
215  (p1->isPion() && p2->isNucleon())) {
216  inelastic = pionNucleon(p1, p2);
217  } else {
218  inelastic = 0.0;
219  }
220 
221  return inelastic + elastic(p1, p2);
222  }
223 
224  G4double CrossSectionsINCL46::pionNucleon(Particle const * const particle1, Particle const * const particle2) {
225  // FUNCTION SPN(X,IND2T3,IPIT3,f17)
226  // SIGMA(PI+ + P) IN THE (3,3) REGION
227  // NEW FIT BY J.VANDERMEULEN + FIT BY Th AOUST ABOVE (3,3) RES
228  // CONST AT LOW AND VERY HIGH ENERGY
229  // COMMON/BL8/RATHR,RAMASS REL21800
230  // integer f17
231  // RATHR and RAMASS are always 0.0!!!
232 
233  G4double x = KinematicsUtils::totalEnergyInCM(particle1, particle2);
234  if(x>10000.) return 0.0; // no cross section above this value
235 
236  G4int ipit3 = 0;
237  G4int ind2t3 = 0;
238  G4double ramass = 0.0;
239 
240  if(particle1->isPion()) {
241  ipit3 = ParticleTable::getIsospin(particle1->getType());
242  } else if(particle2->isPion()) {
243  ipit3 = ParticleTable::getIsospin(particle2->getType());
244  }
245 
246  if(particle1->isNucleon()) {
247  ind2t3 = ParticleTable::getIsospin(particle1->getType());
248  } else if(particle2->isNucleon()) {
249  ind2t3 = ParticleTable::getIsospin(particle2->getType());
250  }
251 
252  G4double y=x*x;
253  G4double q2=(y-1076.0*1076.0)*(y-800.0*800.0)/y/4.0;
254  if (q2 <= 0.) {
255  return 0.0;
256  }
257  G4double q3 = std::pow(std::sqrt(q2),3);
258  G4double f3 = q3/(q3 + 5832000.); // 5832000 = 180^3
259  G4double spnResult = 326.5/(std::pow((x-1215.0-ramass)*2.0/(110.0-ramass), 2)+1.0);
260  spnResult = spnResult*(1.0-5.0*ramass/1215.0);
261  G4double cg = 4.0 + G4double(ind2t3)*G4double(ipit3);
262  spnResult = spnResult*f3*cg/6.0;
263 
264  if(x < 1200.0 && spnResult < 5.0) {
265  spnResult = 5.0;
266  }
267 
268  // HE pi+ p and pi- n
269  if(x > 1290.0) {
270  if((ind2t3 == 1 && ipit3 == 2) || (ind2t3 == -1 && ipit3 == -2))
271  spnResult=spnPiPlusPHE(x);
272  else if((ind2t3 == 1 && ipit3 == -2) || (ind2t3 == -1 && ipit3 == 2))
273  spnResult=spnPiMinusPHE(x);
274  else if(ipit3 == 0) spnResult = (spnPiPlusPHE(x) + spnPiMinusPHE(x))/2.0; // (spnpipphe(x)+spnpimphe(x))/2.0
275  else {
276  INCL_ERROR("Unknown configuration!" << std::endl);
277  }
278  }
279 
280  return spnResult;
281  }
282 
283  G4double CrossSectionsINCL46::recombination(Particle const * const p1, Particle const * const p2) {
285  if(isospin==4 || isospin==-4) return 0.0;
286 
288  G4double Ecm = std::sqrt(s);
289  G4int deltaIsospin;
290  G4double deltaMass;
291  if(p1->isDelta()) {
292  deltaIsospin = ParticleTable::getIsospin(p1->getType());
293  deltaMass = p1->getMass();
294  } else {
295  deltaIsospin = ParticleTable::getIsospin(p2->getType());
296  deltaMass = p2->getMass();
297  }
298 
299  if(Ecm <= 938.3 + deltaMass) {
300  return 0.0;
301  }
302 
303  if(Ecm < 938.3 + deltaMass + 2.0) {
304  Ecm = 938.3 + deltaMass + 2.0;
305  s = Ecm*Ecm;
306  }
307 
309  (s - std::pow(ParticleTable::effectiveNucleonMass + deltaMass, 2));
310  const G4double y = s/(s - std::pow(deltaMass - ParticleTable::effectiveNucleonMass, 2));
311  /* Concerning the way we calculate the lab momentum, see the considerations
312  * in CrossSections::elasticNNLegacy().
313  */
315  G4double result = 0.5 * x * y * deltaProduction(isospin, pLab);
316  result *= 3.*(32.0 + isospin * isospin * (deltaIsospin * deltaIsospin - 5))/64.0;
317  result /= 1.0 + 0.25 * isospin * isospin;
318  return result;
319  }
320 
321  G4double CrossSectionsINCL46::deltaProduction(Particle const * const p1, Particle const * const p2) {
322 // assert(p1->isNucleon() && p2->isNucleon());
323  const G4double sqrts = KinematicsUtils::totalEnergyInCM(p1,p2);
324  if(sqrts < ParticleTable::effectivePionMass + 2*ParticleTable::effectiveNucleonMass + 50.) { // approximately yields INCL4.6's hard-coded threshold in collis, 2065 MeV
325  return 0.0;
326  } else {
327  const G4double pLab = KinematicsUtils::momentumInLab(p1,p2);
329  return deltaProduction(isospin, pLab);
330  }
331  }
332 
333  G4double CrossSectionsINCL46::elastic(Particle const * const p1, Particle const * const p2) {
334  if(!p1->isPion() && !p2->isPion())
335  // return elasticNN(p1, p2); // New implementation
336  return elasticNNLegacy(p1, p2); // Translated from INCL4.6 FORTRAN
337  else
338  return 0.0; // No pion-nucleon elastic scattering
339  }
340 
342  G4double x = 0.001 * pl; // Change to GeV
343  if(iso != 0) {
344  if(pl <= 2000.0) {
345  x = std::pow(x, 8);
346  return 5.5e-6 * x/(7.7 + x);
347  } else {
348  return (5.34 + 0.67*(x - 2.0)) * 1.0e-6;
349  }
350  } else {
351  if(pl < 800.0) {
352  G4double b = (7.16 - 1.63*x) * 1.0e-6;
353  return b/(1.0 + std::exp(-(x - 0.45)/0.05));
354  } else if(pl < 1100.0) {
355  return (9.87 - 4.88 * x) * 1.0e-6;
356  } else {
357  return (3.68 + 0.76*x) * 1.0e-6;
358  }
359  }
360  return 0.0; // Should never reach this point
361  }
362 
363 } // namespace G4INCL
364 
G4double getMass() const
Get the cached particle mass.
virtual G4double deltaProduction(Particle const *const p1, Particle const *const p2)
Cross section for NN->NDelta.
G4double elasticNNLegacy(Particle const *const part1, Particle const *const part2)
Internal implementation of the elastic cross section.
G4double squareTotalEnergyInCM(Particle const *const p1, Particle const *const p2)
virtual G4double calculateNNAngularSlope(G4double energyCM, G4int iso)
Calculate the slope of the NN DDXS.
#define INCL_ERROR(x)
virtual G4double recombination(Particle const *const p1, Particle const *const p2)
Cross section for NDelta->NN.
G4bool isDelta() const
Is it a Delta?
G4double spnPiMinusPHE(const G4double x)
int G4int
Definition: G4Types.hh:78
G4double spnPiPlusPHE(const G4double x)
static const double s
Definition: G4SIunits.hh:150
const G4double effectivePionMass
virtual G4double total(Particle const *const p1, Particle const *const p2)
Total (elastic+inelastic) particle-particle cross section.
virtual G4double pionNucleon(Particle const *const p1, Particle const *const p2)
Total (elastic+inelastic) pion-nucleon cross section.
static const G4double f3
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass2
G4INCL::ParticleType getType() const
Get the particle type.
G4bool isNucleon() const
Is this a nucleon?
virtual G4double elastic(Particle const *const p1, Particle const *const p2)
Elastic particle-particle cross section.
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
double G4double
Definition: G4Types.hh:76
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4bool isPion() const
Is this a pion?
Cross sections used in INCL4.6.
const G4double effectiveNucleonMass