Geant4  10.00.p01
G4EvaporationChannel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4EvaporationChannel.hh 67983 2013-03-13 10:42:03Z gcosmo $
27 //
28 //
29 //J.M. Quesada (August2008). Based on:
30 //
31 // Hadronic Process: Nuclear De-excitations
32 // by V. Lara (Oct 1998)
33 //
34 // 17-11-2010 V.Ivanchenko in constructor replace G4VEmissionProbability by
35 // G4EvaporationProbability and do not new and delete probability
36 // object at each call; use G4Pow
37 
38 #ifndef G4EvaporationChannel_h
39 #define G4EvaporationChannel_h 1
40 
41 #include "G4VEvaporationChannel.hh"
43 #include "G4VCoulombBarrier.hh"
44 
46 
48 {
49 public:
50  // constructor
52  G4EvaporationProbability * aEmissionStrategy,
53  G4VCoulombBarrier * aCoulombBarrier);
54 
55  // destructor
56  virtual ~G4EvaporationChannel();
57 
58  inline void SetEmissionStrategy(G4EvaporationProbability * aEmissionStrategy)
59  {theEvaporationProbabilityPtr = aEmissionStrategy;}
60 
61  inline void SetCoulombBarrierStrategy(G4VCoulombBarrier * aCoulombBarrier)
62  {theCoulombBarrierPtr = aCoulombBarrier;}
63 
64 protected:
65  // default constructor
67 
68 public:
69 
70  // virtual void Initialize(const G4Fragment & fragment);
71 
72  virtual G4double GetEmissionProbability(G4Fragment* fragment);
73 
74  G4FragmentVector * BreakUp(const G4Fragment & theNucleus);
75 
76  inline G4double GetMaximalKineticEnergy(void) const
77  { return MaximalKineticEnergy; }
78 
79 private:
80 
81  // Calculate Binding Energy for separate fragment from nucleus
83 
84  // Calculate maximal kinetic energy that can be carried by fragment (in MeV)
86 
87  // Samples fragment kinetic energy.
88  G4double GetKineticEnergy(const G4Fragment & aFragment);
89 
90  // This has to be removed and put in Random Generator
91  G4ThreeVector IsotropicVector(G4double Magnitude = 1.0);
92 
97 
98  // Data Members
99  // ************
100 private:
101 
102  // This data member define the channel.
103  // They are intializated at object creation (constructor) time.
104 
105  // Atomic Number of ejectile
107 
108  // Charge of ejectile
110 
113 
114  // For evaporation probability calcualation
116 
117  // For Level Density calculation
118  // G4bool MyOwnLevelDensity;
120 
121  // For Coulomb Barrier calculation
124 
125  //---------------------------------------------------
126 
127  // These values depend on the nucleus that is being evaporated.
128  // They are calculated through the Initialize method which takes as parameters
129  // the atomic number, charge and excitation energy of nucleus.
130 
131  // Residual Mass Number
133 
134  // Residual Charge
136 
137  // Emission Probability
139 
140  // Maximal Kinetic Energy that can be carried by fragment
142 
143 };
144 
145 
146 #endif
CLHEP::Hep3Vector G4ThreeVector
G4bool operator==(const G4EvaporationChannel &right) const
G4VCoulombBarrier * theCoulombBarrierPtr
G4EvaporationProbability * theEvaporationProbabilityPtr
virtual G4double GetEmissionProbability(G4Fragment *fragment)
int G4int
Definition: G4Types.hh:78
G4double CalcBindingEnergy(G4int anA, G4int aZ)
G4double GetMaximalKineticEnergy(void) const
const G4EvaporationChannel & operator=(const G4EvaporationChannel &right)
G4VLevelDensityParameter * theLevelDensityPtr
void SetCoulombBarrierStrategy(G4VCoulombBarrier *aCoulombBarrier)
bool G4bool
Definition: G4Types.hh:79
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
G4double CalcMaximalKineticEnergy(G4double U)
G4FragmentVector * BreakUp(const G4Fragment &theNucleus)
G4ThreeVector IsotropicVector(G4double Magnitude=1.0)
double G4double
Definition: G4Types.hh:76
void SetEmissionStrategy(G4EvaporationProbability *aEmissionStrategy)
G4bool operator!=(const G4EvaporationChannel &right) const
G4double GetKineticEnergy(const G4Fragment &aFragment)