92 G4cout <<
"### Monopole ionisation model with d-electron production, Gmag= "
128 if(!
dedx0) {
dedx0 =
new std::vector<G4double>; }
133 if(n < numOfCouples) {
dedx0->resize(numOfCouples); }
136 for(
G4int i=0; i<numOfCouples; ++i) {
141 G4double vF = electron_Compton_length*pow(3*
pi*
pi*eDensity,0.3333333333);
143 (
G4Log(2*vF/fine_structure_const) - 0.5)/vF;
186 dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2);
204 0.5*(log(2.0 * electron_mass_c2 * bg2*cutEnergy / (eexc*eexc)) - 1.0);
208 if(
nmpl > 1) { k = 0.346; }
211 const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685};
213 dedx += 0.5 * k - B[
nmpl];
222 if (dedx < 0.0) { dedx = 0; }
240 if(cutEnergy < maxEnergy) {
274 if(minKinEnergy >= maxKinEnergy) {
return; }
281 G4double etot2 = totEnergy*totEnergy;
282 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*
mass)/etot2;
286 G4double deltaKinEnergy = minKinEnergy*maxKinEnergy
287 /(minKinEnergy*(1.0 - q) + maxKinEnergy*q);
290 G4double totMomentum = totEnergy*sqrt(beta2);
292 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
293 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) /
294 (deltaMomentum * totMomentum);
295 if(cost > 1.0) { cost = 1.0; }
297 G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
301 G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost);
303 deltaDirection.rotateUz(direction);
309 vdp->push_back(delta);
312 kineticEnergy -= deltaKinEnergy;
313 G4ThreeVector finalP = direction*totMomentum - deltaDirection*deltaMomentum;
314 finalP = finalP.unit();
332 G4double twomeanLoss = meanLoss + meanLoss;
334 if(twomeanLoss < siga) {
338 x = (loss - meanLoss)/siga;
343 }
while (0.0 > loss || loss > twomeanLoss);
362 siga = (invbeta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
375 return 2.0*electron_mass_c2*tau*(tau + 2.);
ThreeVector shoot(const G4int Ap, const G4int Af)
G4IonisParamMat * GetIonisation() const
G4double LowEnergyLimit() const
G4ParticleChangeForLoss * GetParticleChangeForLoss()
G4mplIonisationWithDeltaModel(G4double mCharge, const G4String &nam="mplIonisationWithDelta")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double HighEnergyLimit() const
virtual G4double Dispersion(const G4Material *, const G4DynamicParticle *, G4double tmax, G4double length)
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
virtual G4double SampleFluctuations(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmax, G4double length, G4double meanLoss)
void SetParticle(const G4ParticleDefinition *p)
virtual ~G4mplIonisationWithDeltaModel()
G4ParticleDefinition * GetDefinition() const
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy)
static const G4double bg2lim
void SetHighEnergyLimit(G4double)
G4double ComputeDEDXAhlen(const G4Material *material, G4double bg2, G4double cut)
static std::vector< G4double > * dedx0
const G4MaterialCutsCouple * CurrentCouple() const
G4GLOB_DLL std::ostream G4cout
size_t GetTableSize() const
G4double GetElectronDensity() const
G4double pi_hbarc2_over_mc2
const G4ThreeVector & GetMomentumDirection() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static const G4double beta2lim
void SetProposedMomentumDirection(const G4ThreeVector &dir)
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
G4double G4Log(G4double x)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy)
static G4ProductionCutsTable * GetProductionCutsTable()
G4double DensityCorrection(G4double x)
G4double GetPDGMass() const
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
const G4ParticleDefinition * monopole
G4ParticleDefinition * theElectron
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4double GetMeanExcitationEnergy() const
static G4Electron * Electron()
void SetLowEnergyLimit(G4double)
static const double eplus
G4ParticleChangeForLoss * fParticleChange
const G4Material * GetMaterial() const