76                                    0.5917, 0.7628, 0.8983, 0.9801 };
 
   79                                    0.1813, 0.1569, 0.1112, 0.0506 };
 
   91     bremFactor(fine_structure_const*classic_electr_radius*classic_electr_radius*16./3.),
 
   93     fMigdalConstant(classic_electr_radius*electron_Compton_length*electron_Compton_length*4.0*
pi),
 
   94     fLPMconstant(fine_structure_const*electron_mass_c2*electron_mass_c2/(4.*
pi*hbarc)*0.5),
 
   95     fXiLPM(0), fPhiLPM(0), fGLPM(0),
 
   96     use_completescreening(false),isInitialised(false)
 
  127   preS1 = 1./(184.15*184.15);
 
  218   if(cut == 0.0) { 
return 0.0; }
 
  256   for(
G4int l=0; l<
n; l++) {
 
  258     for(
G4int i=0; i<8; i++) {
 
  291   if(cut >= tmax) { 
return 0.0; }
 
  323   for(
G4int l=0; l<
n; l++) {
 
  325     for(
G4int i=0; i<8; i++) {
 
  360   else if (sprime>sqrt(2.)*s1) {
 
  362     xiLPM = 1+h-0.08*(1-h)*(1-
sqr(1-h))/logTS1;
 
  375   if (s0<=s1) 
xiLPM = 2.;
 
  376   else if ( (s1<s0) && (s0<=1) ) { 
xiLPM = 1. + 
G4Log(s0)/logS1; }
 
  387     phiLPM = 6.*s0 - 18.84955592153876*s2 + 39.47841760435743*s3 
 
  388       - 57.69873135166053*s4;
 
  389     gLPM = 37.69911184307752*s2 - 236.8705056261446*s3 + 807.7822389*s4;
 
  391   else if (s0<1.9516) {
 
  395                 +s3/(0.623+0.795*s0+0.658*s2));
 
  396     if (s0<0.415827397755) {
 
  398       G4double psiLPM = 1-
G4Exp(-4*s0-8*s2/(1+3.936*s0+4.97*s2-0.05*s3+7.50*s4));
 
  403       G4double pre = -0.16072300849123999 + s0*3.7550300067531581 + s2*-1.7981383069010097 
 
  404         + s3*0.67282686077812381 + s4*-0.1207722909879257;
 
  410     phiLPM = 1. - 0.0119048/s4;
 
  411     gLPM = 1. - 0.0230655/s4;
 
  427   if(gammaEnergy < 0.0) { 
return 0.0; }
 
  442   G4double cross = mainLPM+secondTerm;
 
  455   if(gammaEnergy < 0.0) { 
return 0.0; }
 
  464     secondTerm = (1.-y)/12.*(1.+1./
currentZ);
 
  475     secondTerm = (1.-y)/8.*(phi1m2+psi1m2/
currentZ);
 
  484                                       std::vector<G4DynamicParticle*>* vdp, 
 
  494   if(cut >= emax) { 
return; }
 
  516     if(x < 0.0) { x = 0.0; }
 
  517     gammaEnergy = sqrt(x);
 
  522       G4cout << 
"### G4eBremsstrahlungRelModel Warning: Majoranta exceeded! " 
  523              << f << 
" > " << 
fMax 
  524              << 
" Egamma(MeV)= " << gammaEnergy
 
  525              << 
" Ee(MeV)= " << kineticEnergy
 
  545   vdp->push_back(gamma);
 
  547   G4double totMomentum = sqrt(kineticEnergy*(totalEnergy + electron_mass_c2));
 
  549                              - gammaEnergy*gammaDirection).unit();
 
  552   G4double finalE = kineticEnergy - gammaEnergy;
 
G4double Psi1(G4double, G4double)
 
G4double LowEnergyLimit() const 
 
G4ParticleChangeForLoss * GetParticleChangeForLoss()
 
G4double SecondaryThreshold() const 
 
G4bool isElectron(G4int ityp)
 
std::vector< G4Element * > G4ElementVector
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
 
void InitialiseConstants()
 
static const G4double wgi[8]
 
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
 
G4VEmAngularDistribution * GetAngularDistribution()
 
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double tkin, G4double Z, G4double, G4double cutEnergy, G4double maxEnergy=DBL_MAX)
 
static const G4double eps
 
G4double Psi1M2(G4double, G4double)
 
const G4ElementVector * GetElementVector() const 
 
virtual void SetupForMaterial(const G4ParticleDefinition *, const G4Material *, G4double)
 
static G4NistManager * Instance()
 
const G4ParticleDefinition * particle
 
static const G4double xgi[8]
 
int main(int argc, char **argv)
 
G4ParticleDefinition * theGamma
 
G4GLOB_DLL std::ostream G4cout
 
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
 
static const G4double Finel_light[5]
 
G4double GetElectronDensity() const 
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double ComputeRelDXSectionPerAtom(G4double gammaEnergy)
 
G4double Phi1(G4double, G4double)
 
void SetProposedKineticEnergy(G4double proposedKinEnergy)
 
virtual ~G4eBremsstrahlungRelModel()
 
std::vector< G4EmElementSelector * > * GetElementSelectors()
 
void SetProposedMomentumDirection(const G4ThreeVector &dir)
 
G4double GetRadlen() const 
 
const G4double * GetAtomicNumDensityVector() const 
 
G4eBremsstrahlungRelModel(const G4ParticleDefinition *p=0, const G4String &nam="eBremLPM")
 
G4double G4Log(G4double x)
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double cutEnergy, G4double maxEnergy)
 
virtual G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double cut)
 
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
 
G4double GetPDGMass() const 
 
static const G4double Fel_light[5]
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
virtual G4double ComputeDXSectionPerAtom(G4double gammaEnergy)
 
void SetLPMFlag(G4bool val)
 
G4double Phi1M2(G4double, G4double)
 
void SetAngularDistribution(G4VEmAngularDistribution *)
 
T min(const T t1, const T t2)
brief Return the smallest of the two arguments 
 
G4double ComputeXSectionPerAtom(G4double cutEnergy)
 
static G4Electron * Electron()
 
const G4String & GetName() const 
 
G4ParticleChangeForLoss * fParticleChange
 
size_t GetNumberOfElements() const 
 
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
 
void SetParticle(const G4ParticleDefinition *p)
 
G4bool use_completescreening
 
void ProposeTrackStatus(G4TrackStatus status)
 
void SetLowEnergyLimit(G4double)
 
G4double energyThresholdLPM
 
void SetCurrentElement(const G4Element *)
 
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel)
 
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4Material * GetMaterial() const 
 
G4double ComputeBremLoss(G4double cutEnergy)
 
void CalcLPMFunctions(G4double gammaEnergy)
 
void SetCurrentElement(const G4double)