117 if ( Z < 0.9999 || GammaEnergy < 0.1*
keV) {
return xSection; }
119 static const G4double a = 20.0 , b = 230.0 , c = 440.0;
122 p3Z = Z*(
d3 +
e3*Z +
f3*Z*Z), p4Z = Z*(
d4 +
e4*Z +
f4*Z*Z);
125 if (Z < 1.5) { T0 = 40.0*
keV; }
127 G4double X =
max(GammaEnergy, T0) / electron_mass_c2;
128 xSection = p1Z*
G4Log(1.+2.*X)/X
129 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
132 if (GammaEnergy < T0) {
134 X = (T0+dT0) / electron_mass_c2 ;
136 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
137 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0);
139 if (Z > 1.5) { c2 = 0.375-0.0556*
G4Log(Z); }
141 xSection *=
G4Exp(-y*(c1+c2*y));
144 if(xSection < 0.0) { xSection = 0.0; }
153 std::vector<G4DynamicParticle*>* fvect,
171 for(i=0; i<nShells; ++i) {
193 for(i=0; i<nShells; ++i) {
if(xprob <=
fProbabilities[i]) {
break; } }
198 lv1.set(0.0,0.0,energy,energy);
207 eKinEnergy = bindingEnergy*x;
208 ePotEnergy = bindingEnergy*(1.0 + x);
211 G4double eTotMomentum = sqrt(eKinEnergy*(eKinEnergy + 2*electron_mass_c2));
214 G4double sintet = sqrt((1 - costet)*(1 + costet));
215 lv2.set(eTotMomentum*sintet*cos(phi),eTotMomentum*sintet*sin(phi),
216 eTotMomentum*costet,eKinEnergy + electron_mass_c2);
220 gamEnergy0 =
lv1.e();
226 G4double E0_m = gamEnergy0/electron_mass_c2;
232 G4double epsilon, epsilonsq, onecost, sint2, greject ;
237 G4double alpha2 = 0.5*(1 - epsilon0sq);
242 epsilonsq = epsilon*epsilon;
246 epsilon = sqrt(epsilonsq);
249 onecost = (1.- epsilon)/(epsilon*E0_m);
250 sint2 = onecost*(2.-onecost);
251 greject = 1. - epsilon*sint2/(1.+ epsilonsq);
254 gamEnergy1 = epsilon*gamEnergy0;
257 lv2.set(0.0,0.0,0.0,electron_mass_c2);
263 if(sint2 < 0.0) { sint2 = 0.0; }
264 costet = 1. - onecost;
265 sintet = sqrt(sint2);
274 lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(),gamEnergy1*v.z(),gamEnergy1);
278 eKinEnergy =
lv2.e() - electron_mass_c2 - ePotEnergy;
281 }
while ( eKinEnergy < 0.0 );
288 gamEnergy1 =
lv1.e();
291 gamDirection1.rotateUz(direction);
305 eDirection.rotateUz(direction);
308 fvect->push_back(dp);
309 }
else { eKinEnergy = 0.0; }
311 G4double edep = energy - gamEnergy1 - eKinEnergy;
322 size_t nbefore = fvect->size();
324 size_t nafter = fvect->size();
325 if(nafter > nbefore) {
326 for (
size_t j=nbefore; j<nafter; ++j) {
327 G4double e = ((*fvect)[j])->GetKineticEnergy();
328 if(esec + e > edep) {
339 for (
size_t jj=j; jj<nafter; ++jj) {
delete (*fvect)[jj]; }
340 for (
size_t jj=j; jj<nafter; ++jj) { fvect->pop_back(); }
349 if(fabs(energy - gamEnergy1 - eKinEnergy - esec - edep) >
eV) {
350 G4cout <<
"### G4KleinNishinaModel dE(eV)= "
351 << (energy - gamEnergy1 - eKinEnergy - esec - edep)/
eV
353 <<
" E(keV)= " << energy/
keV
354 <<
" Ebind(keV)= " << bindingEnergy/
keV
355 <<
" Eg(keV)= " << gamEnergy1/
keV
356 <<
" Ee(keV)= " << eKinEnergy/
keV
357 <<
" Esec(keV)= " << esec/
keV
358 <<
" Edep(keV)= " << edep/
keV
static c2_factory< G4double > c2
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax)
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
static G4LossTableManager * Instance()
G4int GetNbOfAtomicShells() const
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
virtual ~G4KleinNishinaModel()
G4ParticleChangeForGamma * fParticleChange
G4int GetNbOfShellElectrons(G4int index) const
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
G4GLOB_DLL std::ostream G4cout
std::vector< G4double > fProbabilities
const G4ThreeVector & GetMomentumDirection() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
std::vector< G4EmElementSelector * > * GetElementSelectors()
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel)
G4double G4Log(G4double x)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
G4KleinNishinaModel(const G4String &nam="KleinNishina")
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
G4ParticleDefinition * theElectron
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double energy(const ThreeVector &p, const G4double m)
G4VAtomDeexcitation * fAtomDeexcitation
G4ParticleDefinition * theGamma
static G4Electron * Electron()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4VAtomDeexcitation * AtomDeexcitation()
G4double GetAtomicShell(G4int index) const
void ProposeTrackStatus(G4TrackStatus status)
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
void SetDeexcitationFlag(G4bool val)
G4double bindingEnergy(G4int A, G4int Z)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4double lowestGammaEnergy
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
G4ParticleChangeForGamma * GetParticleChangeForGamma()