2 // ********************************************************************
3 // * License and Disclaimer *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
27 // $Id: G4VPreCompoundFragment.icc 96527 2016-04-20 08:51:00Z gcosmo $
31 // Modif (03 September 2008) by J. M. Quesada for external choice of inverse
32 // cross section option
33 // JMQ (06 September 2008) Also external choice has been added for:
34 // - superimposed Coulomb barrier (if useSICB=true)
35 // 23.08.2010 V.Ivanchenko general cleanup, move constructor and destructor
36 // the source, make GetReactionProduct() and IsItPossible inlined
38 inline G4bool G4VPreCompoundFragment::
39 IsItPossible(const G4Fragment & aFragment) const
41 G4int pplus = aFragment.GetNumberOfCharged();
42 G4int pneut = aFragment.GetNumberOfParticles()-pplus;
43 return ((pneut >= theA - theZ) && (pplus >= theZ) && (theMaxKinEnergy > 0));
47 G4ReactionProduct * G4VPreCompoundFragment::GetReactionProduct() const
49 G4ReactionProduct * theReactionProduct =
50 new G4ReactionProduct(particle);
51 theReactionProduct->SetMomentum(GetMomentum().vect());
52 theReactionProduct->SetTotalEnergy(GetMomentum().e());
53 return theReactionProduct;
56 inline G4int G4VPreCompoundFragment::GetA() const
61 inline G4int G4VPreCompoundFragment::GetZ() const
66 inline G4int G4VPreCompoundFragment::GetRestA() const
71 inline G4int G4VPreCompoundFragment::GetRestZ() const
76 inline G4double G4VPreCompoundFragment::GetBindingEnergy() const
78 return theBindingEnergy;
81 inline G4double G4VPreCompoundFragment::GetEnergyThreshold() const
83 return theMaxKinEnergy - theCoulombBarrier;
86 inline G4double G4VPreCompoundFragment::GetEmissionProbability() const
88 return theEmissionProbability;
91 inline G4double G4VPreCompoundFragment::GetNuclearMass(void) const
96 inline G4double G4VPreCompoundFragment::GetRestNuclearMass() const
102 const G4LorentzVector& G4VPreCompoundFragment::GetMomentum() const
108 void G4VPreCompoundFragment::SetMomentum(const G4LorentzVector & value)
113 inline void G4VPreCompoundFragment::SetOPTxs(G4int opt)
118 inline void G4VPreCompoundFragment::UseSICB(G4bool use)