Geant4  10.00.p01
G4VPreCompoundFragment.icc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4VPreCompoundFragment.icc 68028 2013-03-13 13:48:15Z gcosmo $
28 //
29 // by V. Lara
30 //
31 // Modif (03 September 2008) by J. M. Quesada for external choice of inverse
32 // cross section option
33 // JMQ (06 September 2008) Also external choice has been added for:
34 // - superimposed Coulomb barrier (if useSICB=true)
35 // 23.08.2010 V.Ivanchenko general cleanup, move constructor and destructor
36 // the source, make GetReactionProduct() and IsItPossible inlined
37 
38 inline G4bool G4VPreCompoundFragment::
39 IsItPossible(const G4Fragment & aFragment) const
40 {
41  G4int pplus = aFragment.GetNumberOfCharged();
42  G4int pneut = aFragment.GetNumberOfParticles()-pplus;
43  return ((pneut >= theA - theZ) && (pplus >= theZ)
44  && (theMaximalKineticEnergy > 0));
45 }
46 
47 
48 inline
49 G4ReactionProduct * G4VPreCompoundFragment::GetReactionProduct() const
50 {
51  G4ReactionProduct * theReactionProduct =
52  new G4ReactionProduct(const_cast<G4ParticleDefinition*>(particle));
53  theReactionProduct->SetMomentum(GetMomentum().vect());
54  theReactionProduct->SetTotalEnergy(GetMomentum().e());
55  return theReactionProduct;
56 }
57 
58 inline G4int G4VPreCompoundFragment::GetA() const
59 {
60  return theA;
61 }
62 
63 inline G4int G4VPreCompoundFragment::GetZ() const
64 {
65  return theZ;
66 }
67 
68 inline G4int G4VPreCompoundFragment::GetRestA() const
69 {
70  return theRestNucleusA;
71 }
72 
73 inline G4int G4VPreCompoundFragment::GetRestZ() const
74 {
75  return theRestNucleusZ;
76 }
77 
78 inline G4double G4VPreCompoundFragment::ResidualA13() const
79 {
80  return theRestNucleusA13;
81 }
82 
83 inline G4double G4VPreCompoundFragment::GetCoulombBarrier() const
84 {
85  return theCoulombBarrier;
86 }
87 
88 inline G4double G4VPreCompoundFragment::GetBindingEnergy() const
89 {
90  return theBindingEnergy;
91 }
92 
93 inline G4double G4VPreCompoundFragment::GetMaximalKineticEnergy() const
94 {
95  return theMaximalKineticEnergy;
96 }
97 
98 inline G4double G4VPreCompoundFragment::GetEnergyThreshold() const
99 {
100  return theMaximalKineticEnergy - theCoulombBarrier;
101 }
102 
103 inline G4double G4VPreCompoundFragment::GetEmissionProbability() const
104 {
105  return theEmissionProbability;
106 }
107 
108 inline G4double G4VPreCompoundFragment::GetNuclearMass(void) const
109 {
110  return theMass;
111 }
112 
113 inline G4double G4VPreCompoundFragment::GetRestNuclearMass() const
114 {
115  return theRestNucleusMass;
116 }
117 
118 inline G4double G4VPreCompoundFragment::GetReducedMass() const
119 {
120  return theReducedMass;
121 }
122 
123 inline
124 const G4LorentzVector& G4VPreCompoundFragment::GetMomentum() const
125 {
126  return theMomentum;
127 }
128 
129 inline
130 void G4VPreCompoundFragment::SetMomentum(const G4LorentzVector & value)
131 {
132  theMomentum = value;
133 }
134 
135 inline const G4String G4VPreCompoundFragment::
136 GetName() const
137 {
138  return particle->GetParticleName();
139 }
140 
141 //for inverse cross section choice
142 inline void G4VPreCompoundFragment::SetOPTxs(G4int opt)
143 {
144  OPTxs=opt;
145 }
146 
147 //for superimposed Coulomb Barrier for inverse cross sections
148 inline void G4VPreCompoundFragment::UseSICB(G4bool use)
149 {
150  useSICB=use;
151 }