Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ecpssrFormFactorMixsModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // History:
27 // -----------
28 // 01 Oct 2011 A.M., S.I. - 1st implementation
29 //
30 // Class description
31 // ----------------
32 // Computation of K, L & M shell ECPSSR ionisation cross sections for protons and alphas
33 // Based on the work of A. Taborda et al.
34 // EXRS2012 proceedings
35 // ---------------------------------------------------------------------------------------
36 
37 #include <fstream>
38 #include <iomanip>
39 
40 #include "globals.hh"
41 #include "G4ios.hh"
42 #include "G4SystemOfUnits.hh"
43 
44 #include "G4EMDataSet.hh"
45 #include "G4LinInterpolation.hh"
46 #include "G4Proton.hh"
47 #include "G4Alpha.hh"
48 
50 
51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
52 
54 {
55  interpolation = new G4LinInterpolation();
56 
57  for (G4int i=62; i<93; i++)
58  {
59  protonM1DataSetMap[i] = new G4EMDataSet(i,interpolation);
60  protonM1DataSetMap[i]->LoadData("pixe/ecpssr/proton/m1-");
61 
62  protonM2DataSetMap[i] = new G4EMDataSet(i,interpolation);
63  protonM2DataSetMap[i]->LoadData("pixe/ecpssr/proton/m2-");
64 
65  protonM3DataSetMap[i] = new G4EMDataSet(i,interpolation);
66  protonM3DataSetMap[i]->LoadData("pixe/ecpssr/proton/m3-");
67 
68  protonM4DataSetMap[i] = new G4EMDataSet(i,interpolation);
69  protonM4DataSetMap[i]->LoadData("pixe/ecpssr/proton/m4-");
70 
71  protonM5DataSetMap[i] = new G4EMDataSet(i,interpolation);
72  protonM5DataSetMap[i]->LoadData("pixe/ecpssr/proton/m5-");
73  }
74 
75  protonMiXsVector.push_back(protonM1DataSetMap);
76  protonMiXsVector.push_back(protonM2DataSetMap);
77  protonMiXsVector.push_back(protonM3DataSetMap);
78  protonMiXsVector.push_back(protonM4DataSetMap);
79  protonMiXsVector.push_back(protonM5DataSetMap);
80 
81 
82  for (G4int i=62; i<93; i++)
83  {
84  alphaM1DataSetMap[i] = new G4EMDataSet(i,interpolation);
85  alphaM1DataSetMap[i]->LoadData("pixe/ecpssr/alpha/m1-");
86 
87  alphaM2DataSetMap[i] = new G4EMDataSet(i,interpolation);
88  alphaM2DataSetMap[i]->LoadData("pixe/ecpssr/alpha/m2-");
89 
90  alphaM3DataSetMap[i] = new G4EMDataSet(i,interpolation);
91  alphaM3DataSetMap[i]->LoadData("pixe/ecpssr/alpha/m3-");
92 
93  alphaM4DataSetMap[i] = new G4EMDataSet(i,interpolation);
94  alphaM4DataSetMap[i]->LoadData("pixe/ecpssr/alpha/m4-");
95 
96  alphaM5DataSetMap[i] = new G4EMDataSet(i,interpolation);
97  alphaM5DataSetMap[i]->LoadData("pixe/ecpssr/alpha/m5-");
98 
99  }
100 
101  alphaMiXsVector.push_back(alphaM1DataSetMap);
102  alphaMiXsVector.push_back(alphaM2DataSetMap);
103  alphaMiXsVector.push_back(alphaM3DataSetMap);
104  alphaMiXsVector.push_back(alphaM4DataSetMap);
105  alphaMiXsVector.push_back(alphaM5DataSetMap);
106 
107 
108 
109 }
110 
111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
112 
114 {
115  protonM1DataSetMap.clear();
116  alphaM1DataSetMap.clear();
117 
118  protonM2DataSetMap.clear();
119  alphaM2DataSetMap.clear();
120 
121  protonM3DataSetMap.clear();
122  alphaM3DataSetMap.clear();
123 
124  protonM4DataSetMap.clear();
125  alphaM4DataSetMap.clear();
126 
127  protonM5DataSetMap.clear();
128  alphaM5DataSetMap.clear();
129 
130  delete interpolation;
131 }
132 
133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
134 
135 G4double G4ecpssrFormFactorMixsModel::CalculateMiCrossSection(G4int zTarget,G4double massIncident, G4double energyIncident, G4int mShellId)
136 {
137  G4Proton* aProton = G4Proton::Proton();
138  G4Alpha* aAlpha = G4Alpha::Alpha();
139  G4double sigma = 0;
140  G4int mShellIndex = mShellId -1;
141 
142  if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
143 
144  if (massIncident == aProton->GetPDGMass())
145  {
146  sigma = protonMiXsVector[mShellIndex][zTarget]->FindValue(energyIncident/MeV);
147  if (sigma !=0 && energyIncident > protonMiXsVector[mShellIndex][zTarget]->GetEnergies(0).back()*MeV) return 0.;
148  }
149  else if (massIncident == aAlpha->GetPDGMass())
150  {
151  sigma = alphaMiXsVector[mShellIndex][zTarget]->FindValue(energyIncident/MeV);
152  if (sigma !=0 && energyIncident > protonMiXsVector[mShellIndex][zTarget]->GetEnergies(0).back()*MeV) return 0.;
153  }
154  else
155  {
156  sigma = 0.;
157  }
158  }
159 
160  // sigma is in internal units: it has been converted from
161  // the input file in barns bt the EmDataset
162  return sigma;
163 }
164 
165 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
166 
168 {
169 
170  // mShellId
171  return CalculateMiCrossSection (zTarget, massIncident, energyIncident, 1);
172 
173 }
174 
175 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
176 
178 {
179 
180  // mShellId
181  return CalculateMiCrossSection (zTarget, massIncident, energyIncident, 2);
182 
183  /*
184 
185  G4Proton* aProton = G4Proton::Proton();
186  G4Alpha* aAlpha = G4Alpha::Alpha();
187  G4double sigma = 0;
188 
189  if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
190 
191  if (massIncident == aProton->GetPDGMass())
192  {
193  sigma = protonM2DataSetMap[zTarget]->FindValue(energyIncident/MeV);
194  if (sigma !=0 && energyIncident > protonM2DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
195  }
196  else if (massIncident == aAlpha->GetPDGMass())
197  {
198  sigma = alphaM2DataSetMap[zTarget]->FindValue(energyIncident/MeV);
199  if (sigma !=0 && energyIncident > alphaM2DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
200  }
201  else
202  {
203  sigma = 0.;
204  }
205  }
206 
207  // sigma is in internal units: it has been converted from
208  // the input file in barns bt the EmDataset
209  return sigma;
210  */
211 }
212 
213 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
214 
216 {
217 
218  return CalculateMiCrossSection (zTarget, massIncident, energyIncident, 3);
219  /*
220 
221 
222  G4Proton* aProton = G4Proton::Proton();
223  G4Alpha* aAlpha = G4Alpha::Alpha();
224  G4double sigma = 0;
225 
226  if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
227 
228  if (massIncident == aProton->GetPDGMass())
229  {
230  sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
231  if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
232  }
233  else if (massIncident == aAlpha->GetPDGMass())
234  {
235  sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
236  if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
237  }
238  else
239  {
240  sigma = 0.;
241  }
242  }
243 
244  // sigma is in internal units: it has been converted from
245  // the input file in barns bt the EmDataset
246  return sigma;
247  */
248 }
249 
250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
251 
253 {
254 
255  return CalculateMiCrossSection (zTarget, massIncident, energyIncident, 4);
256  /*
257  G4Proton* aProton = G4Proton::Proton();
258  G4Alpha* aAlpha = G4Alpha::Alpha();
259  G4double sigma = 0;
260 
261  if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
262 
263  if (massIncident == aProton->GetPDGMass())
264  {
265  sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
266  if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
267  }
268  else if (massIncident == aAlpha->GetPDGMass())
269  {
270  sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
271  if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
272  }
273  else
274  {
275  sigma = 0.;
276  }
277  }
278 
279  // sigma is in internal units: it has been converted from
280  // the input file in barns bt the EmDataset
281  return sigma;
282  */
283 }
284 
285 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
286 
288 {
289 
290  return CalculateMiCrossSection (zTarget, massIncident, energyIncident, 5);
291  /*
292  G4Proton* aProton = G4Proton::Proton();
293  G4Alpha* aAlpha = G4Alpha::Alpha();
294  G4double sigma = 0;
295 
296  if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
297 
298  if (massIncident == aProton->GetPDGMass())
299  {
300  sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
301  if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
302  }
303  else if (massIncident == aAlpha->GetPDGMass())
304  {
305  sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
306  if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
307  }
308  else
309  {
310  sigma = 0.;
311  }
312  }
313 
314  // sigma is in internal units: it has been converted from
315  // the input file in barns bt the EmDataset
316  return sigma;
317  */
318 }