Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4StatMFMacroTetraNucleon.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 // Hadronic Process: Nuclear De-excitations
30 // by V. Lara
31 
33 #include "G4PhysicalConstants.hh"
34 #include "G4SystemOfUnits.hh"
35 
36 // Copy constructor
39  G4VStatMFMacroCluster(0) // Beacuse the def. constr. of base class is private
40 {
41  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTetraNucleon::copy_constructor meant to not be accessable");
42 }
43 
44 // Operators
45 
46 G4StatMFMacroTetraNucleon & G4StatMFMacroTetraNucleon::
47 operator=(const G4StatMFMacroTetraNucleon & )
48 {
49  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTetraNucleon::operator= meant to not be accessable");
50  return *this;
51 }
52 
53 
54 G4bool G4StatMFMacroTetraNucleon::operator==(const G4StatMFMacroTetraNucleon & ) const
55 {
56  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTetraNucleon::operator== meant to not be accessable");
57  return false;
58 }
59 
60 
61 G4bool G4StatMFMacroTetraNucleon::operator!=(const G4StatMFMacroTetraNucleon & ) const
62 {
63  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTetraNucleon::operator!= meant to not be accessable");
64  return true;
65 }
66 
67 
68 
70  const G4double nu, const G4double T)
71 {
72  const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T);
73 
74  const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
75 
76  const G4double degeneracy = 1; // He4
77 
78  const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
79  (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
80 
81  const G4double BindingE = G4NucleiProperties::GetBindingEnergy(theA,2); //old value was 30.11*MeV
82 
83  G4double exponent = (BindingE + theA*(mu+nu*theZARatio+T*T/_InvLevelDensity) -
84  Coulomb*theZARatio*theZARatio*std::pow(static_cast<G4double>(theA),5./3.))/T;
85  if (exponent > 700.0) exponent = 700.0;
86 
87  _MeanMultiplicity = ( degeneracy*FreeVol* static_cast<G4double>(theA)*
88  std::sqrt(static_cast<G4double>(theA))/lambda3)*
89  std::exp(exponent);
90 
91  return _MeanMultiplicity;
92 }
93 
94 
96 {
97  const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
98  (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
99 
101  Coulomb * theZARatio * theZARatio * std::pow(static_cast<G4double>(theA),5./3.) +
102  (3./2.) * T +
103  theA * T*T/_InvLevelDensity;
104 
105 }
106 
107 
108 
110 {
111  const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T);
112  const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
113 
114  G4double Entropy = 0.0;
115  if (_MeanMultiplicity > 0.0)
116  Entropy = _MeanMultiplicity*(5./2.+
117  std::log(8.0*FreeVol/(lambda3*_MeanMultiplicity)))+ // 8 = theA*std::sqrt(theA)
118  8.0*T/_InvLevelDensity;
119 
120  return Entropy;
121 }