Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4StatMFMacroNucleon.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 // Hadronic Process: Nuclear De-excitations
30 // by V. Lara
31 
32 #include "G4StatMFMacroNucleon.hh"
33 #include "G4PhysicalConstants.hh"
34 #include "G4SystemOfUnits.hh"
35 
36 // Operators
37 
38 G4StatMFMacroNucleon & G4StatMFMacroNucleon::
39 operator=(const G4StatMFMacroNucleon & )
40 {
41  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroNucleon::operator= meant to not be accessable");
42  return *this;
43 }
44 
45 
46 G4bool G4StatMFMacroNucleon::operator==(const G4StatMFMacroNucleon & ) const
47 {
48  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroNucleon::operator== meant to not be accessable");
49  return false;
50 }
51 
52 
53 G4bool G4StatMFMacroNucleon::operator!=(const G4StatMFMacroNucleon & ) const
54 {
55  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroNucleon::operator!= meant to not be accessable");
56  return true;
57 }
58 
60  const G4double nu, const G4double T)
61 {
62  if (T <= 0.0) throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroNucleon::CalcMeanMultiplicity: Temperature less or equal 0");
63  const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T);
64 
65  const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
66 
67  const G4double degeneracy = 2.0;
68 
69  const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
70  (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
71 
72  G4double exponent_proton = (mu+nu-Coulomb)/T;
73  G4double exponent_neutron = mu/T;
74 
75  if (exponent_neutron > 700.0) exponent_neutron = 700.0;
76  if (exponent_proton > 700.0) exponent_proton = 700.0;
77 
78  _NeutronMeanMultiplicity = (degeneracy*FreeVol/lambda3)*std::exp(exponent_neutron);
79 
80  _ProtonMeanMultiplicity = (degeneracy*FreeVol/lambda3)*std::exp(exponent_proton);
81 
82 
83 
84  return _MeanMultiplicity = _NeutronMeanMultiplicity + _ProtonMeanMultiplicity;
85 
86 }
87 
88 
90 {
91  const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
92  (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
93 
94  return _Energy = Coulomb * theZARatio * theZARatio + (3./2.) * T;
95 
96 }
97 
99 {
100  const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T);
101  const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
102 
103  G4double NeutronEntropy = 0.0;
104  if (_NeutronMeanMultiplicity > 0.0)
105  NeutronEntropy = _NeutronMeanMultiplicity*(5./2.+
106  std::log(2.0*static_cast<G4double>(theA)*FreeVol/
107  (lambda3*_NeutronMeanMultiplicity)));
108 
109 
110  G4double ProtonEntropy = 0.0;
111  if (_ProtonMeanMultiplicity > 0.0)
112  ProtonEntropy = _ProtonMeanMultiplicity*(5./2.+
113  std::log(2.0*static_cast<G4double>(theA)*FreeVol/
114  (lambda3*_ProtonMeanMultiplicity)));
115 
116 
117  return NeutronEntropy+ProtonEntropy;
118 }
119