Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4StatMFMacroMultiplicity.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 // Hadronic Process: Nuclear De-excitations
30 // by V. Lara
31 //
32 // Modified:
33 // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor
34 // Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute,
35 // Moscow, pshenich@fias.uni-frankfurt.de) additional checks in
36 // solver of equation for the chemical potential
37 
39 #include "G4PhysicalConstants.hh"
40 
41 // operators definitions
43 G4StatMFMacroMultiplicity::operator=(const G4StatMFMacroMultiplicity & )
44 {
45  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiplicity::operator= meant to not be accessable");
46  return *this;
47 }
48 
49 G4bool G4StatMFMacroMultiplicity::operator==(const G4StatMFMacroMultiplicity & ) const
50 {
51  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiplicity::operator== meant to not be accessable");
52  return false;
53 }
54 
55 
56 G4bool G4StatMFMacroMultiplicity::operator!=(const G4StatMFMacroMultiplicity & ) const
57 {
58  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiplicity::operator!= meant to not be accessable");
59  return true;
60 }
61 
62 
63 
64 
66  // Calculate Chemical potential \mu
67  // For that is necesary to calculate mean multiplicities
68 {
70  (1.0-1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0));
71 
72  // starting value for chemical potential \mu
73  // it is the derivative of F(T,V)-\nu*Z w.r.t. Af in Af=5
74  G4double ZA5 = _theClusters->operator[](4)->GetZARatio();
75  G4double ILD5 = _theClusters->operator[](4)->GetInvLevelDensity();
76  _ChemPotentialMu = -G4StatMFParameters::GetE0()-
77  _MeanTemperature*_MeanTemperature/ILD5 -
78  _ChemPotentialNu*ZA5 +
79  G4StatMFParameters::GetGamma0()*(1.0-2.0*ZA5)*(1.0-2.0*ZA5) +
80  (2.0/3.0)*G4StatMFParameters::Beta(_MeanTemperature)/std::pow(5.,1./3.) +
81  (5.0/3.0)*CP*ZA5*ZA5*std::pow(5.,2./3.) -
82  1.5*_MeanTemperature/5.0;
83 
84 
85 
86  G4double ChemPa = _ChemPotentialMu;
87  if (ChemPa/_MeanTemperature > 10.0) ChemPa = 10.0*_MeanTemperature;
88  G4double ChemPb = ChemPa - 0.5*std::abs(ChemPa);
89 
90 
91  G4double fChemPa = this->operator()(ChemPa);
92  G4double fChemPb = this->operator()(ChemPb);
93 
94 
95  // Set the precision level for locating the root.
96  // If the root is inside this interval, then it's done!
97  G4double intervalWidth = 1.e-4;
98 
99  // bracketing the solution
100  G4int iterations = 0;
101  while (fChemPa*fChemPb > 0.0 && iterations < 100)
102  {
103  if (std::abs(fChemPa) <= std::abs(fChemPb))
104  {
105  ChemPa += 0.6*(ChemPa-ChemPb);
106  fChemPa = this->operator()(ChemPa);
107  iterations++;
108  }
109  else
110  {
111  ChemPb += 0.6*(ChemPb-ChemPa);
112  fChemPb = this->operator()(ChemPb);
113  iterations++;
114  }
115  }
116 
117  if (fChemPa*fChemPb > 0.0) // the bracketing failed, complain
118  {
119  G4cerr <<"G4StatMFMacroMultiplicity:"<<" ChemPa="<<ChemPa<<" ChemPb="<<ChemPb<< G4endl;
120  G4cerr <<"G4StatMFMacroMultiplicity:"<<" fChemPa="<<fChemPa<<" fChemPb="<<fChemPb<< G4endl;
121  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiplicity::CalcChemicalPotentialMu: I couldn't bracket the root.");
122  }
123  else if (fChemPa*fChemPb < 0.0 && std::abs(ChemPa-ChemPb) > intervalWidth) // the bracketing was OK, try to locate the root
124  {
126  theSolver->SetIntervalLimits(ChemPa,ChemPb);
127  // if (!theSolver->Crenshaw(*this))
128  if (!theSolver->Brent(*this))
129  {
130  G4cerr <<"G4StatMFMacroMultiplicity:"<<" ChemPa="<<ChemPa<<" ChemPb="<<ChemPb<< G4endl;
131  G4cerr <<"G4StatMFMacroMultiplicity:"<<" fChemPa="<<fChemPa<<" fChemPb="<<fChemPb<< G4endl;
132  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiplicity::CalcChemicalPotentialMu: I couldn't find the root.");
133  }
134  _ChemPotentialMu = theSolver->GetRoot();
135  delete theSolver;
136  }
137  else // the root is within the interval, which is shorter then the precision level - all done
138  {
139  _ChemPotentialMu = ChemPa;
140  }
141 
142  return _ChemPotentialMu;
143 }
144 
145 
146 
147 G4double G4StatMFMacroMultiplicity::CalcMeanA(const G4double mu)
148 {
149  G4double r03 = G4StatMFParameters::Getr0(); r03 *= r03*r03;
150  G4double V0 = (4.0/3.0)*pi*theA*r03;
151 
152  G4double MeanA = 0.0;
153 
154  _MeanMultiplicity = 0.0;
155 
156 
157  G4int n = 1;
158  for (std::vector<G4VStatMFMacroCluster*>::iterator i = _theClusters->begin();
159  i != _theClusters->end(); ++i)
160  {
161  G4double multip = (*i)->CalcMeanMultiplicity(V0*_Kappa,mu,_ChemPotentialNu,_MeanTemperature);
162  MeanA += multip*static_cast<G4double>(n++);
163  _MeanMultiplicity += multip;
164  }
165 
166  return MeanA;
167 }