Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4QProtonElasticCrossSection.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 //
30 // G4 Physics class: G4QProtonElasticCrossSection for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10-OCT-01
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 12-Jan-10 (from G4QElCrSect)
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the G4QElastic process
36 // -------------------------------------------------------------------------------
37 
38 //#define debug
39 //#define isodebug
40 //#define pdebug
41 //#define ppdebug
42 //#define tdebug
43 //#define sdebug
44 
46 #include "G4SystemOfUnits.hh"
47 
48 // Initialization of the static parameters
49 const G4int G4QProtonElasticCrossSection::nPoints=128;//#ofPt in the AMDB table(>anyPar)(D)
50 const G4int G4QProtonElasticCrossSection::nLast=nPoints-1;// theLastElement in the table(D)
51 G4double G4QProtonElasticCrossSection::lPMin=-8.; // Min tabulated logarithmicMomentum(D)
52 G4double G4QProtonElasticCrossSection::lPMax= 8.; // Max tabulated logarithmicMomentum(D)
53 G4double G4QProtonElasticCrossSection::dlnP=(lPMax-lPMin)/nLast;// LogStep in the table(D)
54 G4bool G4QProtonElasticCrossSection::onlyCS=true;// Flag toCalculateOnlyCS(not Si/Bi)(L)
55 G4double G4QProtonElasticCrossSection::lastSIG=0.; // Last calculated cross section (L)
56 G4double G4QProtonElasticCrossSection::lastLP=-10.;// Last log(mom_ofTheIncidentHadron)(L)
57 G4double G4QProtonElasticCrossSection::lastTM=0.; // Last t_maximum (L)
58 G4double G4QProtonElasticCrossSection::theSS=0.; // The Last sq.slope of 1st difr.Max(L)
59 G4double G4QProtonElasticCrossSection::theS1=0.; // The Last mantissa of 1st difr.Max(L)
60 G4double G4QProtonElasticCrossSection::theB1=0.; // The Last slope of 1st difruct.Max(L)
61 G4double G4QProtonElasticCrossSection::theS2=0.; // The Last mantissa of 2nd difr.Max(L)
62 G4double G4QProtonElasticCrossSection::theB2=0.; // The Last slope of 2nd difruct.Max(L)
63 G4double G4QProtonElasticCrossSection::theS3=0.; // The Last mantissa of 3d difr. Max(L)
64 G4double G4QProtonElasticCrossSection::theB3=0.; // The Last slope of 3d difruct. Max(L)
65 G4double G4QProtonElasticCrossSection::theS4=0.; // The Last mantissa of 4th difr.Max(L)
66 G4double G4QProtonElasticCrossSection::theB4=0.; // The Last slope of 4th difruct.Max(L)
67 G4int G4QProtonElasticCrossSection::lastTZ=0; // Last atomic number of the target
68 G4int G4QProtonElasticCrossSection::lastTN=0; // Last # of neutrons in the target
69 G4double G4QProtonElasticCrossSection::lastPIN=0.; // Last initialized max momentum
70 G4double* G4QProtonElasticCrossSection::lastCST=0; // Elastic cross-section table
71 G4double* G4QProtonElasticCrossSection::lastPAR=0; // Parameters for FunctionalCalculation
72 G4double* G4QProtonElasticCrossSection::lastSST=0; // E-dep of sq.slope of the 1st dif.Max
73 G4double* G4QProtonElasticCrossSection::lastS1T=0; // E-dep of mantissa of the 1st dif.Max
74 G4double* G4QProtonElasticCrossSection::lastB1T=0; // E-dep of the slope of the 1st difMax
75 G4double* G4QProtonElasticCrossSection::lastS2T=0; // E-dep of mantissa of the 2nd difrMax
76 G4double* G4QProtonElasticCrossSection::lastB2T=0; // E-dep of the slope of the 2nd difMax
77 G4double* G4QProtonElasticCrossSection::lastS3T=0; // E-dep of mantissa of the 3d difr.Max
78 G4double* G4QProtonElasticCrossSection::lastB3T=0; // E-dep of the slope of the 3d difrMax
79 G4double* G4QProtonElasticCrossSection::lastS4T=0; // E-dep of mantissa of the 4th difrMax
80 G4double* G4QProtonElasticCrossSection::lastB4T=0; // E-dep of the slope of the 4th difMax
81 G4int G4QProtonElasticCrossSection::lastN=0; // The last N of calculated nucleus
82 G4int G4QProtonElasticCrossSection::lastZ=0; // The last Z of calculated nucleus
83 G4double G4QProtonElasticCrossSection::lastP=0.; // Last used in cross section Momentum
84 G4double G4QProtonElasticCrossSection::lastTH=0.; // Last threshold momentum
85 G4double G4QProtonElasticCrossSection::lastCS=0.; // Last value of the Cross Section
86 G4int G4QProtonElasticCrossSection::lastI=0; // The last position in the DAMDB
87 
88 std::vector<G4double*> G4QProtonElasticCrossSection::PAR; // Vector of pars for functCalcul
89 std::vector<G4double*> G4QProtonElasticCrossSection::CST; // Vector of cross-section table
90 std::vector<G4double*> G4QProtonElasticCrossSection::SST; // Vector of the 1st SquaredSlope
91 std::vector<G4double*> G4QProtonElasticCrossSection::S1T; // Vector of the 1st mantissa
92 std::vector<G4double*> G4QProtonElasticCrossSection::B1T; // Vector of the 1st slope
93 std::vector<G4double*> G4QProtonElasticCrossSection::S2T; // Vector of the 2nd mantissa
94 std::vector<G4double*> G4QProtonElasticCrossSection::B2T; // Vector of the 2nd slope
95 std::vector<G4double*> G4QProtonElasticCrossSection::S3T; // Vector of the 3d mantissa
96 std::vector<G4double*> G4QProtonElasticCrossSection::B3T; // Vector of the 3d slope
97 std::vector<G4double*> G4QProtonElasticCrossSection::S4T; // Vector of the 4th mantissa (g)
98 std::vector<G4double*> G4QProtonElasticCrossSection::B4T; // Vector of the 4th slope (glor)
99 
101 {
102 }
103 
105 {
106  std::vector<G4double*>::iterator pos;
107  for (pos=CST.begin(); pos<CST.end(); pos++)
108  { delete [] *pos; }
109  CST.clear();
110  for (pos=PAR.begin(); pos<PAR.end(); pos++)
111  { delete [] *pos; }
112  PAR.clear();
113  for (pos=SST.begin(); pos<SST.end(); pos++)
114  { delete [] *pos; }
115  SST.clear();
116  for (pos=S1T.begin(); pos<S1T.end(); pos++)
117  { delete [] *pos; }
118  S1T.clear();
119  for (pos=B1T.begin(); pos<B1T.end(); pos++)
120  { delete [] *pos; }
121  B1T.clear();
122  for (pos=S2T.begin(); pos<S2T.end(); pos++)
123  { delete [] *pos; }
124  S2T.clear();
125  for (pos=B2T.begin(); pos<B2T.end(); pos++)
126  { delete [] *pos; }
127  B2T.clear();
128  for (pos=S3T.begin(); pos<S3T.end(); pos++)
129  { delete [] *pos; }
130  S3T.clear();
131  for (pos=B3T.begin(); pos<B3T.end(); pos++)
132  { delete [] *pos; }
133  B3T.clear();
134  for (pos=S4T.begin(); pos<S4T.end(); pos++)
135  { delete [] *pos; }
136  S4T.clear();
137  for (pos=B4T.begin(); pos<B4T.end(); pos++)
138  { delete [] *pos; }
139  B4T.clear();
140 }
141 
142 // Returns Pointer to the G4VQCrossSection class
144 {
145  static G4QProtonElasticCrossSection theCrossSection;//*StaticBody of theQEl CrossSection*
146  return &theCrossSection;
147 }
148 
149 // The main member function giving the collision cross section (P is in IU, CS is in mb)
150 // Make pMom in independent units ! (Now it is MeV)
152  G4int tgN, G4int pPDG)
153 {
154  static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
155  static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
156  static std::vector <G4double> colP; // Vector of last momenta for the reaction
157  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
158  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
159  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
160  G4double pEn=pMom;
161  onlyCS=fCS;
162 #ifdef pdebug
163  G4cout<<"G4QPElCS::GetCS:>>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="
164  <<tgN<<"("<<lastN<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="<<colN.size()<<G4endl;
165  //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
166 #endif
167  if(pPDG!=2212)
168  {
169  G4cout<<"*Warning*G4QProtonElCS::GetCS: *** Found pPDG="<<pPDG<<" =--=> CS=0"<<G4endl;
170  //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
171  return 0.; // projectile PDG=0 is a mistake (?!) @@
172  }
173  G4bool in=false; // By default the isotope must be found in the AMDB
174  lastP = 0.; // New momentum history (nothing to compare with)
175  lastN = tgN; // The last N of the calculated nucleus
176  lastZ = tgZ; // The last Z of the calculated nucleus
177  lastI = colN.size(); // Size of the Associative Memory DB in the heap
178  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
179  { // The nucleus with projPDG is found in AMDB
180  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
181  {
182  lastI=i;
183  lastTH =colTH[i]; // Last THreshold (A-dependent)
184 #ifdef pdebug
185  G4cout<<"G4QElCS::GetCS:*Found* P="<<pMom<<",Threshold="<<lastTH<<",i="<<i<<G4endl;
186  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
187 #endif
188  if(pEn<=lastTH)
189  {
190 #ifdef pdebug
191  G4cout<<"G4QElCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",CS=0"<<G4endl;
192  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
193 #endif
194  return 0.; // Energy is below the Threshold value
195  }
196  lastP =colP [i]; // Last Momentum (A-dependent)
197  lastCS =colCS[i]; // Last CrossSect (A-dependent)
198  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
199  if(lastP == pMom) // Do not recalculate
200  {
201 #ifdef pdebug
202  G4cout<<"G4QElCS::GetCS:P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
203 #endif
204  CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
205  return lastCS*millibarn; // Use theLastCS
206  }
207  in = true; // This is the case when the isotop is found in DB
208  // Momentum pMom is in IU ! @@ Units
209 #ifdef pdebug
210  G4cout<<"G4QElCS::G:UpdateDB P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",i="<<i<<G4endl;
211 #endif
212  lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
213 #ifdef pdebug
214  G4cout<<"G4QElCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
215  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
216 #endif
217  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
218  {
219 #ifdef pdebug
220  G4cout<<"G4QElCS::GetCS: New T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
221 #endif
222  lastTH=pEn;
223  }
224  break; // Go out of the LOOP with found lastI
225  }
226 #ifdef pdebug
227  G4cout<<"---G4QElCrossSec::GetCrosSec:pPDG="<<pPDG<<",i="<<i<<",N="<<colN[i]
228  <<",Z["<<i<<"]="<<colZ[i]<<G4endl;
229  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
230 #endif
231  } // End of attampt to find the nucleus in DB
232  if(!in) // This nucleus has not been calculated previously
233  {
234 #ifdef pdebug
235  G4cout<<"G4QElCS::GetCrosSec:CalcNew P="<<pMom<<",f="<<fCS<<",lastI="<<lastI<<G4endl;
236 #endif
237  lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
239  if(lastCS<=0.)
240  {
241  lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
242 #ifdef pdebug
243  G4cout<<"G4QElCrossSection::GetCrossSect: NewThresh="<<lastTH<<",T="<<pEn<<G4endl;
244 #endif
245  if(pEn>lastTH)
246  {
247 #ifdef pdebug
248  G4cout<<"G4QElCS::GetCS: First T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
249 #endif
250  lastTH=pEn;
251  }
252  }
253 #ifdef pdebug
254  G4cout<<"G4QElCS::GetCrosSec: New CS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
255  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
256 #endif
257  colN.push_back(tgN);
258  colZ.push_back(tgZ);
259  colP.push_back(pMom);
260  colTH.push_back(lastTH);
261  colCS.push_back(lastCS);
262 #ifdef pdebug
263  G4cout<<"G4QElCS::GetCS:1st,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
264  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
265 #endif
266  return lastCS*millibarn;
267  } // End of creation of the new set of parameters
268  else
269  {
270 #ifdef pdebug
271  G4cout<<"G4QElCS::GetCS: Update lastI="<<lastI<<G4endl;
272 #endif
273  colP[lastI]=pMom;
274  colCS[lastI]=lastCS;
275  }
276 #ifdef pdebug
277  G4cout<<"G4QElCS::GetCrSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
278  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
279  G4cout<<"G4QElCS::GetCrSec:***End***, onlyCS="<<onlyCS<<G4endl;
280 #endif
281  return lastCS*millibarn;
282 }
283 
284 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
285 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
287  G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
288 {
289  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
290  static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
291  // *** End of Static Definitions (Associative Memory Data Base) ***
292  G4double pMom=pIU/GeV; // All calculations are in GeV
293  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
294 #ifdef pdebug
295  G4cout<<"G4QProtonElasticCrossS::CalcCS:->onlyCS="<<onlyCS<<",F="<<F<<",p="<<pIU<<G4endl;
296 #endif
297  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
298  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
299  {
300  if(F<0) // the AMDB must be loded
301  {
302  lastPIN = PIN[I]; // Max log(P) initialised for this table set
303  lastPAR = PAR[I]; // Pointer to the parameter set
304  lastCST = CST[I]; // Pointer to the total sross-section table
305  lastSST = SST[I]; // Pointer to the first squared slope
306  lastS1T = S1T[I]; // Pointer to the first mantissa
307  lastB1T = B1T[I]; // Pointer to the first slope
308  lastS2T = S2T[I]; // Pointer to the second mantissa
309  lastB2T = B2T[I]; // Pointer to the second slope
310  lastS3T = S3T[I]; // Pointer to the third mantissa
311  lastB3T = B3T[I]; // Pointer to the rhird slope
312  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
313  lastB4T = B4T[I]; // Pointer to the 4-th slope
314 #ifdef pdebug
315  G4cout<<"G4QElasticCS::CalcCS: DB is updated for I="<<I<<",*,PIN4="<<PIN[4]<<G4endl;
316 #endif
317  }
318 #ifdef pdebug
319  G4cout<<"G4QProtonElasticCrossS::CalcCS:*read*, LP="<<lastLP<<",PIN="<<lastPIN<<G4endl;
320 #endif
321  if(lastLP>lastPIN && lastLP<lPMax)
322  {
323  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
324 #ifdef pdebug
325  G4cout<<"G4QElCS::CalcCS:*updated(I)*,LP="<<lastLP<<"<IN["<<I<<"]="<<lastPIN<<G4endl;
326 #endif
327  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
328  }
329  }
330  else // This isotope wasn't initialized => CREATE
331  {
332  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
333  lastPAR[nLast]=0; // Initialization for VALGRIND
334  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
335  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
336  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
337  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
338  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
339  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
340  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
341  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
342  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
343  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
344 #ifdef pdebug
345  G4cout<<"G4QProtonElasticCrossS::CalcCS:*ini*,lastLP="<<lastLP<<",min="<<lPMin<<G4endl;
346 #endif
347  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
348 #ifdef pdebug
349  G4cout<<"G4QProtElCS::CCS:i,Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",LP"<<lastPIN<<G4endl;
350 #endif
351  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
352  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
353  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
354  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
355  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
356  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
357  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
358  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
359  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
360  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
361  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
362  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
363  } // End of creation/update of the new set of parameters and tables
364  // =--------= NOW Update (if necessary) and Calculate the Cross Section =------------=
365 #ifdef pdebug
366  G4cout<<"G4QElCS::CalcCS:?update?,LP="<<lastLP<<",IN="<<lastPIN<<",ML="<<lPMax<<G4endl;
367 #endif
368  if(lastLP>lastPIN && lastLP<lPMax)
369  {
370  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
371 #ifdef pdebug
372  G4cout<<"G4QElCS::CalcCS: *updated(O)*, LP="<<lastLP<<" < IN="<<lastPIN<<G4endl;
373 #endif
374  }
375 #ifdef pdebug
376  G4cout<<"G4QElastCS::CalcCS: lastLP="<<lastLP<<",lPM="<<lPMin<<",lPIN="<<lastPIN<<G4endl;
377 #endif
378  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
379 #ifdef pdebug
380  G4cout<<"G4QElasticCrosSec::CalcCS:oCS="<<onlyCS<<",-t="<<lastTM<<", p="<<lastLP<<G4endl;
381 #endif
382  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
383  {
384  if(lastLP==lastPIN)
385  {
386  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
387  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
388  if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
389  lastSIG = lastCST[blast];
390  if(!onlyCS) // Skip the differential cross-section parameters
391  {
392  theSS = lastSST[blast];
393  theS1 = lastS1T[blast];
394  theB1 = lastB1T[blast];
395  theS2 = lastS2T[blast];
396  theB2 = lastB2T[blast];
397  theS3 = lastS3T[blast];
398  theB3 = lastB3T[blast];
399  theS4 = lastS4T[blast];
400  theB4 = lastB4T[blast];
401  }
402 #ifdef pdebug
403  G4cout<<"G4QProtonElasticCrossS::CalculateCS:(E) S1="<<theS1<<", B1="<<theB1<<G4endl;
404 #endif
405  }
406  else
407  {
408  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
409  G4int blast=static_cast<int>(shift); // the lower bin number
410  if(blast<0) blast=0;
411  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
412  shift-=blast; // step inside the unit bin
413  G4int lastL=blast+1; // the upper bin number
414  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
415  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
416 #ifdef pdebug
417  G4cout<<"G4QElCS::CalcCrossSection: Sig="<<lastSIG<<", P="<<pMom<<", Z="<<tgZ<<", N="
418  <<tgN<<", PDG="<<PDG<<", onlyCS="<<onlyCS<<G4endl;
419 #endif
420  if(!onlyCS) // Skip the differential cross-section parameters
421  {
422  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
423  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
424  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
425  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
426  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
427 #ifdef pdebug
428  G4cout<<"G4QElCS::CalcCrossSection:bl="<<blast<<",ls="<<lastL<<",SL="<<S1TL<<",SU="
429  <<lastS1T[lastL]<<",BL="<<B1TL<<",BU="<<lastB1T[lastL]<<G4endl;
430 #endif
431  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
432  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
433  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
434  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
435  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
436  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
437  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
438 #ifdef pdebug
439  G4cout<<"G4QElCS::CCS: s3l="<<S3TL<<",sh3="<<shift<<",s3h="<<lastS3T[lastL]<<",b="
440  <<blast<<",l="<<lastL<<G4endl;
441 #endif
442  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
443  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
444  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
445  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
446 #ifdef pdebug
447  G4cout<<"G4QElCS::CCS: s4l="<<S4TL<<",sh4="<<shift<<",s4h="<<lastS4T[lastL]<<",b="
448  <<blast<<",l="<<lastL<<G4endl;
449 #endif
450  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
451  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
452  }
453 #ifdef pdebug
454  G4cout<<"G4QProtonElasticCrossS::CalculateCS:(I) S1="<<theS1<<", B1="<<theB1<<G4endl;
455 #endif
456  }
457  }
458  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
459  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
460 #ifdef pdebug
461  G4cout<<"G4QProtonElasticCrossSection::CalculateCS: END, onlyCS="<<onlyCS<<G4endl;
462 #endif
463  return lastSIG;
464 }
465 
466 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
467 G4double G4QProtonElasticCrossSection::GetPTables(G4double LP, G4double ILP, G4int PDG,
468  G4int tgZ, G4int tgN)
469 {
470  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
471  static const G4double pwd=2727;
472  const G4int n_npel=24; // #of parameters for np-elastic (<nPoints=128)
473  const G4int n_ppel=32; // #of parameters for pp-elastic (<nPoints=128)
474  // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10--11--12--13- -14-
475  G4double np_el[n_npel]={12.,.05,.0001,5.,.35,6.75,.14,19.,.6,6.75,.14,13.,.14,.6,.00013,
476  75.,.001,7.2,4.32,.012,2.5,0.0,12.,.34};
477  // -15--16--17- -18- -19--20--21--22--23-
478  // -0- -1- -2- -3- -4- -5- -6- -7- -8--9--10--11--12--13-
479  G4double pp_el[n_ppel]={2.865,18.9,.6461,3.,9.,.425,.4276,.0022,5.,74.,3.,3.4,.2,.17,
480  .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,
481  8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
482  // -14--15- -16- -17- -18- -19- -20- -21- -22- -23- -24- -25-
483  // -26- -27- -28- -29- -30- -31-
484  if(PDG==2212)
485  {
486  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
487  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
488  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
489  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
490  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
491  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
492  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
493  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
494  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
495  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
496  //
497  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
498  {
499  if ( tgZ == 0 && tgN == 1 )
500  {
501  for (G4int ip=0; ip<n_npel; ip++) lastPAR[ip]=np_el[ip]; // pn
502 
503  }
504  else if ( tgZ == 1 && tgN == 0 )
505  {
506  for (G4int ip=0; ip<n_ppel; ip++) lastPAR[ip]=pp_el[ip]; // pp
507  }
508  else
509  {
510  G4double a=tgZ+tgN;
511  G4double sa=std::sqrt(a);
512  G4double ssa=std::sqrt(sa);
513  G4double asa=a*sa;
514  G4double a2=a*a;
515  G4double a3=a2*a;
516  G4double a4=a3*a;
517  G4double a5=a4*a;
518  G4double a6=a4*a2;
519  G4double a7=a6*a;
520  G4double a8=a7*a;
521  G4double a9=a8*a;
522  G4double a10=a5*a5;
523  G4double a12=a6*a6;
524  G4double a14=a7*a7;
525  G4double a16=a8*a8;
526  G4double a17=a16*a;
527  G4double a20=a16*a4;
528  G4double a32=a16*a16;
529  // Reaction cross-section parameters (pel=peh_fit.f)
530  lastPAR[0]=5./(1.+22./asa); // p1
531  lastPAR[1]=4.8*std::pow(a,1.14)/(1.+3.6/a3); // p2
532  lastPAR[2]=1./(1.+4.E-3*a4)+2.E-6*a3/(1.+1.3E-6*a3); // p3
533  lastPAR[3]=1.3*a; // p4
534  lastPAR[4]=3.E-8*a3/(1.+4.E-7*a4); // p5
535  lastPAR[5]=.07*asa/(1.+.009*a2); // p6
536  lastPAR[6]=(3.+3.E-16*a20)/(1.+a20*(2.E-16/a+3.E-19*a)); // p7 (11)
537  lastPAR[7]=(5.E-9*a4*sa+.27/a)/(1.+5.E16/a20)/(1.+6.E-9*a4)+.015/a2; // p8
538  lastPAR[8]=(.001*a+.07/a)/(1.+5.E13/a16+5.E-7*a3)+.0003/sa; // p9 (10)
539  // @@ the differential cross-section is parameterized separately for A>6 & A<7
540  if(a<6.5)
541  {
542  G4double a28=a16*a12;
543  // The main pre-exponent (pel_sg)
544  lastPAR[ 9]=4000*a; // p1
545  lastPAR[10]=1.2e7*a8+380*a17; // p2
546  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
547  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
548  lastPAR[13]=.28*a; // p5
549  lastPAR[14]=1.2*a2+2.3; // p6
550  lastPAR[15]=3.8/a; // p7
551  // The main slope (pel_sl)
552  lastPAR[16]=.01/(1.+.0024*a5); // p1
553  lastPAR[17]=.2*a; // p2
554  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
555  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
556  // The main quadratic (pel_sh)
557  lastPAR[20]=2.25*a3; // p1
558  lastPAR[21]=18.; // p2
559  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
560  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
561  // The 1st max pre-exponent (pel_qq)
562  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
563  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
564  lastPAR[26]=.0006*a3; // p3
565  // The 1st max slope (pel_qs)
566  lastPAR[27]=10.+4.e-8*a12*a; // p1
567  lastPAR[28]=.114; // p2
568  lastPAR[29]=.003; // p3
569  lastPAR[30]=2.e-23; // p4
570  // The effective pre-exponent (pel_ss)
571  lastPAR[31]=1./(1.+.0001*a8); // p1
572  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
573  lastPAR[33]=.03; // p3
574  // The effective slope (pel_sb)
575  lastPAR[34]=a/2; // p1
576  lastPAR[35]=2.e-7*a4; // p2
577  lastPAR[36]=4.; // p3
578  lastPAR[37]=64./a3; // p4
579  // The gloria pre-exponent (pel_us)
580  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
581  lastPAR[39]=20.*std::exp(.45*asa); // p2
582  lastPAR[40]=7.e3+2.4e6/a5; // p3
583  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
584  lastPAR[42]=2.5*a; // p5
585  // The gloria slope (pel_ub)
586  lastPAR[43]=920.+.03*a8*a3; // p1
587  lastPAR[44]=93.+.0023*a12; // p2
588 #ifdef pdebug
589  G4cout<<"G4QElCS::CalcCS:la "<<lastPAR[38]<<", "<<lastPAR[39]<<", "<<lastPAR[40]
590  <<", "<<lastPAR[42]<<", "<<lastPAR[43]<<", "<<lastPAR[44]<<G4endl;
591 #endif
592  }
593  else
594  {
595  G4double p1a10=2.2e-28*a10;
596  G4double r4a16=6.e14/a16;
597  G4double s4a16=r4a16*r4a16;
598  // a24
599  // a36
600  // The main pre-exponent (peh_sg)
601  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
602  lastPAR[10]=.06*std::pow(a,.6); // p2
603  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
604  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
605  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
606  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
607  // The main slope (peh_sl)
608  lastPAR[15]=400./a12+2.e-22*a9; // p1
609  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
610  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
611  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
612  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
613  lastPAR[20]=9.+100./a; // p6
614  // The main quadratic (peh_sh)
615  lastPAR[21]=.002*a3+3.e7/a6; // p1
616  lastPAR[22]=7.e-15*a4*asa; // p2
617  lastPAR[23]=9000./a4; // p3
618  // The 1st max pre-exponent (peh_qq)
619  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
620  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
621  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
622  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
623  // The 1st max slope (peh_qs)
624  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
625  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
626  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
627  lastPAR[31]=100./asa; // p4
628  // The 2nd max pre-exponent (peh_ss)
629  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
630  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
631  lastPAR[34]=1.3+3.e5/a4; // p3
632  lastPAR[35]=500./(a2+50.)+3; // p4
633  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
634  // The 2nd max slope (peh_sb)
635  lastPAR[37]=.4*asa+3.e-9*a6; // p1
636  lastPAR[38]=.0005*a5; // p2
637  lastPAR[39]=.002*a5; // p3
638  lastPAR[40]=10.; // p4
639  // The effective pre-exponent (peh_us)
640  lastPAR[41]=.05+.005*a; // p1
641  lastPAR[42]=7.e-8/sa; // p2
642  lastPAR[43]=.8*sa; // p3
643  lastPAR[44]=.02*sa; // p4
644  lastPAR[45]=1.e8/a3; // p5
645  lastPAR[46]=3.e32/(a32+1.e32); // p6
646  // The effective slope (peh_ub)
647  lastPAR[47]=24.; // p1
648  lastPAR[48]=20./sa; // p2
649  lastPAR[49]=7.e3*a/(sa+1.); // p3
650  lastPAR[50]=900.*sa/(1.+500./a3); // p4
651 #ifdef pdebug
652  G4cout<<"G4QElCS::CalcCS:ha "<<lastPAR[41]<<", "<<lastPAR[42]<<", "<<lastPAR[43]
653  <<", "<<lastPAR[44]<<", "<<lastPAR[45]<<", "<<lastPAR[46]<<G4endl;
654 #endif
655  }
656  // Parameter for lowEnergyNeutrons
657  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
658  }
659  lastPAR[nLast]=pwd;
660  // and initialize the zero element of the table
661  G4double lp=lPMin; // ln(momentum)
662  G4bool memCS=onlyCS; // ??
663  onlyCS=false;
664  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
665  onlyCS=memCS;
666  lastSST[0]=theSS;
667  lastS1T[0]=theS1;
668  lastB1T[0]=theB1;
669  lastS2T[0]=theS2;
670  lastB2T[0]=theB2;
671  lastS3T[0]=theS3;
672  lastB3T[0]=theB3;
673  lastS4T[0]=theS4;
674  lastB4T[0]=theB4;
675 #ifdef pdebug
676  G4cout<<"G4QProtonElasticCrossSection::GetPTables:ip=0(init), lp="<<lp<<",S1="<<theS1
677  <<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB3<<",S3="<<theS3
678  <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
679 #endif
680  }
681  if(LP>ILP)
682  {
683  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
684  if(ini<0) ini=0;
685  if(ini<nPoints)
686  {
687  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
688  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
689  if(fin>=ini)
690  {
691  G4double lp=0.;
692  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
693  {
694  lp=lPMin+ip*dlnP; // ln(momentum)
695  G4bool memCS=onlyCS;
696  onlyCS=false;
697  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
698  onlyCS=memCS;
699  lastSST[ip]=theSS;
700  lastS1T[ip]=theS1;
701  lastB1T[ip]=theB1;
702  lastS2T[ip]=theS2;
703  lastB2T[ip]=theB2;
704  lastS3T[ip]=theS3;
705  lastB3T[ip]=theB3;
706  lastS4T[ip]=theS4;
707  lastB4T[ip]=theB4;
708 #ifdef pdebug
709  G4cout<<"G4QProtonElasticCrossSection::GetPTables:ip="<<ip<<",lp="<<lp<<",S1="
710  <<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB2<<",S3="
711  <<theS3<<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
712 #endif
713  }
714  return lp;
715  }
716  else G4cout<<"*Warning*G4QProtonElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="
717  <<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP<<" > ILP="
718  <<ILP<<" nothing is done!"<<G4endl;
719  }
720  else G4cout<<"*Warning*G4QProtonElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="
721  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
722  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
723  }
724 #ifdef pdebug
725  else G4cout<<"*Warning*G4QProtonElasticCrossSection::GetPTables:PDG="<<PDG<<", Z="<<tgZ
726  <<", N="<<tgN<<", LP="<<LP<<" <= ILP="<<ILP<<" nothing is done!"<<G4endl;
727 #endif
728  }
729  else
730  {
731  // G4cout<<"*Error*G4QProtonElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="<<tgZ
732  // <<", N="<<tgN<<", while it is defined only for PDG=2212"<<G4endl;
733  // throw G4QException("G4QProtonElasticCrossSection::GetPTables: only pA're implemented");
735  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
736  << ", while it is defined only for PDG=2212 (p)" << G4endl;
737  G4Exception("G4QProtonElasticCrossSection::GetPTables()", "HAD_CHPS_0000",
738  FatalException, ed);
739  }
740  return ILP;
741 }
742 
743 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
745 {
746  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
747  static const G4double third=1./3.;
748  static const G4double fifth=1./5.;
749  static const G4double sevth=1./7.;
750 #ifdef tdebug
751  G4cout<<"G4QProtElCS::GetExcT: F="<<onlyCS<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
752 #endif
753  if(PDG!=2212) G4cout<<"**Warning*G4QProtonElasticCrossSection::GetExT:PDG="<<PDG<<G4endl;
754  if(onlyCS) G4cout<<"**Warning*G4QProtonElasticCrossSection::GetExchanT:onlyCS=1"<<G4endl;
755  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
756  G4double q2=0.;
757  if(tgZ==1 && tgN==0) // ===> p+p=p+p
758  {
759 #ifdef tdebug
760  G4cout<<"G4QElasticCS::GetExchangeT: TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",S2="
761  <<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",GeV2="<<GeVSQ<<G4endl;
762 #endif
763  G4double E1=lastTM*theB1;
764  G4double R1=(1.-std::exp(-E1));
765 #ifdef tdebug
766  G4double ts1=-std::log(1.-R1)/theB1;
767  G4double ds1=std::fabs(ts1-lastTM)/lastTM;
768  if(ds1>.0001)
769  G4cout<<"*Warning*G4QElCS::GetExT:1p "<<ts1<<"#"<<lastTM<<",d="<<ds1
770  <<",R1="<<R1<<",E1="<<E1<<G4endl;
771 #endif
772  G4double E2=lastTM*theB2;
773  G4double R2=(1.-std::exp(-E2*E2*E2));
774 #ifdef tdebug
775  G4double ts2=std::pow(-std::log(1.-R2),.333333333)/theB2;
776  G4double ds2=std::fabs(ts2-lastTM)/lastTM;
777  if(ds2>.0001)
778  G4cout<<"*Warning*G4QElCS::GetExT:2p "<<ts2<<"#"<<lastTM<<",d="<<ds2
779  <<",R2="<<R2<<",E2="<<E2<<G4endl;
780 #endif
781  G4double E3=lastTM*theB3;
782  G4double R3=(1.-std::exp(-E3));
783 #ifdef tdebug
784  G4double ts3=-std::log(1.-R3)/theB3;
785  G4double ds3=std::fabs(ts3-lastTM)/lastTM;
786  if(ds3>.0001)
787  G4cout<<"*Warning*G4QElCS::GetExT:3p "<<ts3<<"#"<<lastTM<<",d="<<ds3
788  <<",R3="<<R1<<",E3="<<E3<<G4endl;
789 #endif
790  G4double I1=R1*theS1/theB1;
791  G4double I2=R2*theS2;
792  G4double I3=R3*theS3;
793  G4double I12=I1+I2;
794  G4double rand=(I12+I3)*G4UniformRand();
795  if (rand<I1 )
796  {
797  G4double ran=R1*G4UniformRand();
798  if(ran>1.) ran=1.;
799  q2=-std::log(1.-ran)/theB1;
800  }
801  else if(rand<I12)
802  {
803  G4double ran=R2*G4UniformRand();
804  if(ran>1.) ran=1.;
805  q2=-std::log(1.-ran);
806  if(q2<0.) q2=0.;
807  q2=std::pow(q2,third)/theB2;
808  }
809  else
810  {
811  G4double ran=R3*G4UniformRand();
812  if(ran>1.) ran=1.;
813  q2=-std::log(1.-ran)/theB3;
814  }
815  }
816  else
817  {
818  G4double a=tgZ+tgN;
819 #ifdef tdebug
820  G4cout<<"G4QElCS::GetExT: a="<<a<<",t="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",SS="
821  <<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="
822  <<theS4<<",B4="<<theB4<<G4endl;
823 #endif
824  G4double E1=lastTM*(theB1+lastTM*theSS);
825  G4double R1=(1.-std::exp(-E1));
826  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
827 #ifdef tdebug
828  G4double ts1=-std::log(1.-R1)/theB1;
829  if(std::fabs(tss)>1.e-7) ts1=(std::sqrt(theB1*(theB1+(tss+tss)*ts1))-theB1)/tss;
830  G4double ds1=(ts1-lastTM)/lastTM;
831  if(ds1>.0001)
832  G4cout<<"*Warning*G4QElCS::GetExT:1a "<<ts1<<"#"<<lastTM<<",d="<<ds1
833  <<",R1="<<R1<<",E1="<<E1<<G4endl;
834 #endif
835  G4double tm2=lastTM*lastTM;
836  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
837  if(a>6.5)E2*=tm2; // for heavy nuclei
838  G4double R2=(1.-std::exp(-E2));
839 #ifdef tdebug
840  G4double ts2=-std::log(1.-R2)/theB2;
841  if(a<6.5)ts2=std::pow(ts2,third);
842  else ts2=std::pow(ts2,fifth);
843  G4double ds2=std::fabs(ts2-lastTM)/lastTM;
844  if(ds2>.0001)
845  G4cout<<"*Warning*G4QElCS::GetExT:2a "<<ts2<<"#"<<lastTM<<",d="<<ds2
846  <<",R2="<<R2<<",E2="<<E2<<G4endl;
847 #endif
848  G4double E3=lastTM*theB3;
849  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
850  G4double R3=(1.-std::exp(-E3));
851 #ifdef tdebug
852  G4double ts3=-std::log(1.-R3)/theB3;
853  if(a>6.5)ts3=std::pow(ts3,sevth);
854  G4double ds3=std::fabs(ts3-lastTM)/lastTM;
855  if(ds3>.0001)
856  G4cout<<"*Warning*G4QElCS::GetExT:3a "<<ts3<<"#"<<lastTM<<",d="<<ds3
857  <<",R3="<<R3<<",E3="<<E3<<G4endl;
858 #endif
859  G4double E4=lastTM*theB4;
860  G4double R4=(1.-std::exp(-E4));
861 #ifdef tdebug
862  G4double ts4=-std::log(1.-R4)/theB4;
863  G4double ds4=std::fabs(ts4-lastTM)/lastTM;
864  if(ds4>.0001)
865  G4cout<<"*Warning*G4QElCS::GetExT:4a "<<ts4<<"#"<<lastTM<<",d="<<ds4
866  <<",R4="<<R4<<",E4="<<E4<<G4endl;
867 #endif
868  G4double I1=R1*theS1;
869  G4double I2=R2*theS2;
870  G4double I3=R3*theS3;
871  G4double I4=R4*theS4;
872  G4double I12=I1+I2;
873  G4double I13=I12+I3;
874  G4double rand=(I13+I4)*G4UniformRand();
875 #ifdef tdebug
876  G4cout<<"G4QElCS::GtExT:1="<<I1<<",2="<<I2<<",3="<<I3<<",4="<<I4<<",r="<<rand<<G4endl;
877 #endif
878  if(rand<I1)
879  {
880  G4double ran=R1*G4UniformRand();
881  if(ran>1.) ran=1.;
882  q2=-std::log(1.-ran)/theB1;
883  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
884 #ifdef tdebug
885  G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",ss="<<tss/2<<",b1="<<theB1<<",t1="<<ts1<<G4endl;
886 #endif
887  }
888  else if(rand<I12)
889  {
890  G4double ran=R2*G4UniformRand();
891  if(ran>1.) ran=1.;
892  q2=-std::log(1.-ran)/theB2;
893  if(q2<0.) q2=0.;
894  if(a<6.5) q2=std::pow(q2,third);
895  else q2=std::pow(q2,fifth);
896 #ifdef tdebug
897  G4cout<<"G4QElCS::GetExT: Q2="<<q2<<", r2="<<R2<<", b2="<<theB2<<",t2="<<ts2<<G4endl;
898 #endif
899  }
900  else if(rand<I13)
901  {
902  G4double ran=R3*G4UniformRand();
903  if(ran>1.) ran=1.;
904  q2=-std::log(1.-ran)/theB3;
905  if(q2<0.) q2=0.;
906  if(a>6.5) q2=std::pow(q2,sevth);
907 #ifdef tdebug
908  G4cout<<"G4QElCS::GetExT:Q2="<<q2<<", r3="<<R2<<", b3="<<theB2<<",t3="<<ts2<<G4endl;
909 #endif
910  }
911  else
912  {
913  G4double ran=R4*G4UniformRand();
914  if(ran>1.) ran=1.;
915  q2=-std::log(1.-ran)/theB4;
916  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
917 #ifdef tdebug
918  G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",m="<<lastTM<<",b4="<<theB3<<",t4="<<ts3<<G4endl;
919 #endif
920  }
921  }
922  if(q2<0.) q2=0.;
923  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
924  if(q2>lastTM)
925  {
926 #ifdef tdebug
927  G4cout<<"*Warning*G4QElasticCrossSect::GetExT:-t="<<q2<<">"<<lastTM<<G4endl;
928 #endif
929  q2=lastTM;
930  }
931  return q2*GeVSQ;
932 }
933 
934 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
936 {
937  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
938 #ifdef tdebug
939  G4cout<<"G4QElasticCS::GetSlope:"<<onlyCS<<", Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
940 #endif
941  if(onlyCS) G4cout<<"*Warning*G4QProtonElasticCrossSection::GetSlope:onlyCS=true"<<G4endl;
942  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
943  if(PDG!=2212)
944  {
945  // G4cout<<"*Error*G4QProtonElasticCrossSection::GetSlope: PDG="<<PDG<<", Z="<<tgZ<<", N="
946  // <<tgN<<", while it is defined only for PDG=2212"<<G4endl;
947  // throw G4QException("G4QProtonElasticCrossSection::GetSlope: pA are implemented");
949  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
950  << ", while it is defined only for PDG=2212 (p)" << G4endl;
951  G4Exception("G4QProtonElasticCrossSection::GetSlope()", "HAD_CHPS_0000",
952  FatalException, ed);
953  }
954  if(theB1<0.) theB1=0.;
955  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
956  return theB1/GeVSQ;
957 }
958 
959 // Returns half max(Q2=-t) in independent units (MeV^2)
961 {
962  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
963  return lastTM*HGeVSQ;
964 }
965 
966 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
967 G4double G4QProtonElasticCrossSection::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
968  G4int tgN)
969 {
970  if(PDG!=2212) G4cout<<"*Warning*G4QProtonElasticCrossSection::GetTabV:PDG="<<PDG<<G4endl;
971  if(tgZ<0 || tgZ>92)
972  {
973  G4cout<<"*Warning*G4QProtonElCS::GetTabValue: (1-92) No isotopes for Z="<<tgZ<<G4endl;
974  return 0.;
975  }
976  G4int iZ=tgZ-1; // Z index
977  if(iZ<0)
978  {
979  iZ=0; // conversion of the neutron target to the proton target
980  tgZ=1;
981  tgN=0;
982  }
983  //if(nN[iZ][0] < 0)
984  //{
985 #ifdef isodebug
986  // G4cout<<"*Warning*G4QElasticCS::GetTabValue: No isotopes for Z="<<tgZ<<G4endl;
987 #endif
988  // return 0.;
989  //}
990 #ifdef pdebug
991  G4cout<<"G4QElasticCS::GetTabVal: lp="<<lp<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
992 #endif
993  G4double p=std::exp(lp); // momentum
994  G4double sp=std::sqrt(p); // sqrt(p)
995  G4double p2=p*p;
996  G4double p3=p2*p;
997  G4double p4=p3*p;
998  if ( tgZ == 1 && tgN == 0 ) // pp/nn
999  {
1000  G4double p2s=p2*sp;
1001  G4double dl2=lp-lastPAR[8];
1002  theSS=lastPAR[31];
1003  theS1=(lastPAR[9]+lastPAR[10]*dl2*dl2)/(1.+lastPAR[11]/p4/p)+
1004  (lastPAR[12]/p2+lastPAR[13]*p)/(p4+lastPAR[14]*sp);
1005  theB1=lastPAR[15]*std::pow(p,lastPAR[16])/(1.+lastPAR[17]/p3);
1006  theS2=lastPAR[18]+lastPAR[19]/(p4+lastPAR[20]*p);
1007  theB2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]/sp);
1008  theS3=lastPAR[24]+lastPAR[25]/(p4*p4+lastPAR[26]*p2+lastPAR[27]);
1009  theB3=lastPAR[28]+lastPAR[29]/(p4+lastPAR[30]);
1010  theS4=0.;
1011  theB4=0.;
1012 #ifdef tdebug
1013  G4cout<<"G4QElasticCS::GetTableValues:(pp) TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1
1014  <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS1<<",B3="<<theB1<<G4endl;
1015 #endif
1016  // Returns the total elastic pp cross-section (to avoid spoiling lastSIG)
1017  G4double dl1=lp-lastPAR[3];
1018  return lastPAR[0]/p2s/(1.+lastPAR[7]/p2s)+(lastPAR[1]+lastPAR[2]*dl1*dl1+lastPAR[4]/p)
1019  /(1.+lastPAR[5]*lp)/(1.+lastPAR[6]/p4);
1020  }
1021  else
1022  {
1023  G4double p5=p4*p;
1024  G4double p6=p5*p;
1025  G4double p8=p6*p2;
1026  G4double p10=p8*p2;
1027  G4double p12=p10*p2;
1028  G4double p16=p8*p8;
1029  //G4double p24=p16*p8;
1030  G4double dl=lp-5.;
1031  G4double a=tgZ+tgN;
1032  G4double pah=std::pow(p,a/2);
1033  G4double pa=pah*pah;
1034  G4double pa2=pa*pa;
1035  if(a<6.5)
1036  {
1037  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
1038  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
1039  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
1040  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
1041  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
1042  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
1043  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
1044  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
1045  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
1046  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
1047  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
1048 #ifdef tdebug
1049  G4cout<<"G4QElCS::GetTabV: lA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1050  <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1051  <<",B4="<<theB4<<G4endl;
1052 #endif
1053  }
1054  else
1055  {
1056  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
1057  lastPAR[13]/(p5+lastPAR[14]/p16);
1058  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
1059  lastPAR[17]/(1.+lastPAR[18]/p4);
1060  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
1061  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
1062  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
1063  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
1064  lastPAR[33]/(1.+lastPAR[34]/p6);
1065  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
1066  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
1067  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
1068  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
1069 #ifdef tdebug
1070  G4cout<<"G4QElCS::GetTabV: hA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1071  <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1072  <<",B4="<<theB4<<G4endl;
1073 #endif
1074  }
1075  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
1076 #ifdef tdebug
1077  G4cout<<"G4QElCS::GetTabV: PDG="<<PDG<<",P="<<p<<",N="<<tgN<<",Z="<<tgZ<<G4endl;
1078 #endif
1079  // p1 p2 p3 p6
1080  return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p+lastPAR[5]/p6)+
1081  lastPAR[3]/(p3+lastPAR[4]/p3)+lastPAR[7]/(p4+std::pow((lastPAR[8]/p),lastPAR[6]));
1082  // p4 p5 p8 p9 p7
1083  }
1084  return 0.;
1085 } // End of GetTableValues
1086 
1087 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
1088 G4double G4QProtonElasticCrossSection::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
1089  G4double pP)
1090 {
1091  //static const G4double mNeut= G4QPDGCode(2112).GetMass()*.001; // MeV to GeV
1092  static const G4double mProt= G4QPDGCode(2212).GetMass()*.001; // MeV to GeV
1093  //static const G4double mLamb= G4QPDGCode(3122).GetMass()*.001; // MeV to GeV
1094  //static const G4double mHe3 = G4QPDGCode(2112).GetNuclMass(2,1,0)*.001; // MeV to GeV
1095  //static const G4double mAlph = G4QPDGCode(2112).GetNuclMass(2,2,0)*.001; // MeV to GeV
1096  //static const G4double mDeut = G4QPDGCode(2112).GetNuclMass(1,1,0)*.001; // MeV to GeV
1097  static const G4double mProt2= mProt*mProt;
1098  //static const G4double mNeut2= mNeut*mNeut;
1099  //static const G4double mDeut2= mDeut*mDeut;
1100  G4double pP2=pP*pP; // squared momentum of the projectile
1101  if(tgZ==1 && tgN==0)
1102  {
1103  G4double tMid=std::sqrt(pP2+mProt2)*mProt-mProt2; // CMS 90deg value of -t=Q2 (GeV^2)
1104  return tMid+tMid;
1105  }
1106  else if(tgZ || tgN) // ---> pA
1107  {
1108  G4double mt=G4QPDGCode(90000000+tgZ*1000+tgN).GetMass()*.001; // Target mass in GeV
1109  G4double dmt=mt+mt;
1110  G4double s_value=dmt*std::sqrt(pP2+mProt2)+mProt2+mt*mt;// Mondelstam s
1111  return dmt*dmt*pP2/s_value;
1112  }
1113  else
1114  {
1115  // G4cout<<"*Error*G4QProtonElasticCrossSection::GetQ2max: PDG="<<PDG<<", Z="<<tgZ<<", N="
1116  // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
1117  // throw G4QException("G4QProtonElasticCrossSection::GetQ2max: only pA are implemented");
1119  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
1120  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
1121  G4Exception("G4QProtonElasticCrossSection::GetQ2max()", "HAD_CHPS_0000",
1122  FatalException, ed);
1123  return 0;
1124  }
1125 }
1126