Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4QPionPlusElasticCrossSection.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 //
30 // G4 Physics class: G4QPionPlusElasticCrossSection for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the G4QElastic process
36 // -------------------------------------------------------------------------------
37 
38 //#define debug
39 //#define isodebug
40 //#define pdebug
41 //#define ppdebug
42 //#define tdebug
43 //#define sdebug
44 
46 #include "G4SystemOfUnits.hh"
47 
48 // Initialization of the static parameters
49 const G4int G4QPionPlusElasticCrossSection::nPoints=128;//#ofPt in AMDB table(>anyPar)(D)
50 const G4int G4QPionPlusElasticCrossSection::nLast=nPoints-1;// theLastElement inTheTable(D)
51 G4double G4QPionPlusElasticCrossSection::lPMin=-8.; // Min tabulated logarithmMomentum(D)
52 G4double G4QPionPlusElasticCrossSection::lPMax= 8.; // Max tabulated logarithmMomentum(D)
53 G4double G4QPionPlusElasticCrossSection::dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
54 G4bool G4QPionPlusElasticCrossSection::onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
55 G4double G4QPionPlusElasticCrossSection::lastSIG=0.; // Last calculated cross section (L)
56 G4double G4QPionPlusElasticCrossSection::lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
57 G4double G4QPionPlusElasticCrossSection::lastTM=0.; // Last t_maximum (L)
58 G4double G4QPionPlusElasticCrossSection::theSS=0.; // TheLastSqSlope of 1st difr.Max(L)
59 G4double G4QPionPlusElasticCrossSection::theS1=0.; // TheLastMantissa of 1st difr.Max(L)
60 G4double G4QPionPlusElasticCrossSection::theB1=0.; // TheLastSlope of 1st difruct.Max(L)
61 G4double G4QPionPlusElasticCrossSection::theS2=0.; // TheLastMantissa of 2nd difr.Max(L)
62 G4double G4QPionPlusElasticCrossSection::theB2=0.; // TheLastSlope of 2nd difruct.Max(L)
63 G4double G4QPionPlusElasticCrossSection::theS3=0.; // TheLastMantissa of 3d difr. Max(L)
64 G4double G4QPionPlusElasticCrossSection::theB3=0.; // TheLastSlope of 3d difruct. Max(L)
65 G4double G4QPionPlusElasticCrossSection::theS4=0.; // TheLastMantissa of 4th difr.Max(L)
66 G4double G4QPionPlusElasticCrossSection::theB4=0.; // TheLastSlope of 4th difruct.Max(L)
67 G4int G4QPionPlusElasticCrossSection::lastTZ=0; // Last atomic number of the target
68 G4int G4QPionPlusElasticCrossSection::lastTN=0; // Last # of neutrons in the target
69 G4double G4QPionPlusElasticCrossSection::lastPIN=0.; // Last initialized max momentum
70 G4double* G4QPionPlusElasticCrossSection::lastCST=0; // Elastic cross-section table
71 G4double* G4QPionPlusElasticCrossSection::lastPAR=0; // ParametersForFunctionalCalculation
72 G4double* G4QPionPlusElasticCrossSection::lastSST=0; // E-dep of SqaredSlope of 1st difMax
73 G4double* G4QPionPlusElasticCrossSection::lastS1T=0; // E-dep of mantissa of 1st dif.Max
74 G4double* G4QPionPlusElasticCrossSection::lastB1T=0; // E-dep of the slope of 1st difMax
75 G4double* G4QPionPlusElasticCrossSection::lastS2T=0; // E-dep of mantissa of 2nd difrMax
76 G4double* G4QPionPlusElasticCrossSection::lastB2T=0; // E-dep of the slope of 2nd difMax
77 G4double* G4QPionPlusElasticCrossSection::lastS3T=0; // E-dep of mantissa of 3d difr.Max
78 G4double* G4QPionPlusElasticCrossSection::lastB3T=0; // E-dep of the slope of 3d difrMax
79 G4double* G4QPionPlusElasticCrossSection::lastS4T=0; // E-dep of mantissa of 4th difrMax
80 G4double* G4QPionPlusElasticCrossSection::lastB4T=0; // E-dep of the slope of 4th difMax
81 G4int G4QPionPlusElasticCrossSection::lastN=0; // The last N of calculated nucleus
82 G4int G4QPionPlusElasticCrossSection::lastZ=0; // The last Z of calculated nucleus
83 G4double G4QPionPlusElasticCrossSection::lastP=0.; // LastUsed in cross section Momentum
84 G4double G4QPionPlusElasticCrossSection::lastTH=0.; // Last threshold momentum
85 G4double G4QPionPlusElasticCrossSection::lastCS=0.; // Last value of the Cross Section
86 G4int G4QPionPlusElasticCrossSection::lastI=0; // The last position in the DAMDB
87 
88 std::vector<G4double*> G4QPionPlusElasticCrossSection::PAR;// Vector of pars forFunctCalcul
89 std::vector<G4double*> G4QPionPlusElasticCrossSection::CST;// Vector of cross-section table
90 std::vector<G4double*> G4QPionPlusElasticCrossSection::SST;// Vector of the 1st SquareSlope
91 std::vector<G4double*> G4QPionPlusElasticCrossSection::S1T;// Vector of the 1st mantissa
92 std::vector<G4double*> G4QPionPlusElasticCrossSection::B1T;// Vector of the 1st slope
93 std::vector<G4double*> G4QPionPlusElasticCrossSection::S2T;// Vector of the 2nd mantissa
94 std::vector<G4double*> G4QPionPlusElasticCrossSection::B2T;// Vector of the 2nd slope
95 std::vector<G4double*> G4QPionPlusElasticCrossSection::S3T;// Vector of the 3d mantissa
96 std::vector<G4double*> G4QPionPlusElasticCrossSection::B3T;// Vector of the 3d slope
97 std::vector<G4double*> G4QPionPlusElasticCrossSection::S4T;// Vector of the 4th mantissa(g)
98 std::vector<G4double*> G4QPionPlusElasticCrossSection::B4T;// Vector of the 4th slope(glor)
99 
101 {
102 }
103 
105 {
106  std::vector<G4double*>::iterator pos;
107  for (pos=CST.begin(); pos<CST.end(); pos++)
108  { delete [] *pos; }
109  CST.clear();
110  for (pos=PAR.begin(); pos<PAR.end(); pos++)
111  { delete [] *pos; }
112  PAR.clear();
113  for (pos=SST.begin(); pos<SST.end(); pos++)
114  { delete [] *pos; }
115  SST.clear();
116  for (pos=S1T.begin(); pos<S1T.end(); pos++)
117  { delete [] *pos; }
118  S1T.clear();
119  for (pos=B1T.begin(); pos<B1T.end(); pos++)
120  { delete [] *pos; }
121  B1T.clear();
122  for (pos=S2T.begin(); pos<S2T.end(); pos++)
123  { delete [] *pos; }
124  S2T.clear();
125  for (pos=B2T.begin(); pos<B2T.end(); pos++)
126  { delete [] *pos; }
127  B2T.clear();
128  for (pos=S3T.begin(); pos<S3T.end(); pos++)
129  { delete [] *pos; }
130  S3T.clear();
131  for (pos=B3T.begin(); pos<B3T.end(); pos++)
132  { delete [] *pos; }
133  B3T.clear();
134  for (pos=S4T.begin(); pos<S4T.end(); pos++)
135  { delete [] *pos; }
136  S4T.clear();
137  for (pos=B4T.begin(); pos<B4T.end(); pos++)
138  { delete [] *pos; }
139  B4T.clear();
140 }
141 
142 // Returns Pointer to the G4VQCrossSection class
144 {
145  static G4QPionPlusElasticCrossSection theCrossSection;//StaticBody of theQEl CrossSection
146 #ifdef pdebug
147  G4cout<<"G4QPiPlElCS::GetCS: PiPlus Elastic pointer is taken"<<G4endl;
148 #endif
149  return &theCrossSection;
150 }
151 
152 // The main member function giving the collision cross section (P is in IU, CS is in mb)
153 // Make pMom in independent units ! (Now it is MeV)
155  G4int tgZ, G4int tgN, G4int pPDG)
156 {
157  static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
158  static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
159  static std::vector <G4double> colP; // Vector of last momenta for the reaction
160  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
161  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
162  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
163  G4double pEn=pMom;
164  onlyCS=fCS;
165 #ifdef pdebug
166  G4cout<<"G4QPElCS::GetCS:>>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="
167  <<tgN<<"("<<lastN<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="<<colN.size()<<G4endl;
168  //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
169 #endif
170  if(pPDG!= 211)
171  {
172  G4cout<<"*Warning*G4QPionPlusElCS::GetCS:**> Found pPDG="<<pPDG<<" =--=> CS=0"<<G4endl;
173  //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
174  return 0.; // projectile PDG=0 is a mistake (?!) @@
175  }
176  G4bool in=false; // By default the isotope must be found in the AMDB
177  lastP = 0.; // New momentum history (nothing to compare with)
178  lastN = tgN; // The last N of the calculated nucleus
179  lastZ = tgZ; // The last Z of the calculated nucleus
180  lastI = colN.size(); // Size of the Associative Memory DB in the heap
181  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
182  { // The nucleus with projPDG is found in AMDB
183  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
184  {
185  lastI=i;
186  lastTH =colTH[i]; // Last THreshold (A-dependent)
187 #ifdef debug
188  G4cout<<"G4QElCS::GetCS:*Found* P="<<pMom<<",Threshold="<<lastTH<<",i="<<i<<G4endl;
189  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
190 #endif
191  if(pEn<=lastTH)
192  {
193 #ifdef debug
194  G4cout<<"G4QElCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",CS=0"<<G4endl;
195  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
196 #endif
197  return 0.; // Energy is below the Threshold value
198  }
199  lastP =colP [i]; // Last Momentum (A-dependent)
200  lastCS =colCS[i]; // Last CrossSect (A-dependent)
201  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
202  if(lastP == pMom) // Do not recalculate
203  {
204 #ifdef debug
205  G4cout<<"G4QElCS::GetCS:P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
206 #endif
207  CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
208  return lastCS*millibarn; // Use theLastCS
209  }
210  in = true; // This is the case when the isotop is found in DB
211  // Momentum pMom is in IU ! @@ Units
212 #ifdef debug
213  G4cout<<"G4QElCS::G:UpdateDB P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",i="<<i<<G4endl;
214 #endif
215  lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
216 #ifdef debug
217  G4cout<<"G4QElCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
218  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
219 #endif
220  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
221  {
222 #ifdef debug
223  G4cout<<"G4QElCS::GetCS: New T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
224 #endif
225  lastTH=pEn;
226  }
227  break; // Go out of the LOOP with found lastI
228  }
229 #ifdef debug
230  G4cout<<"---G4QElCrossSec::GetCrosSec:pPDG="<<pPDG<<",i="<<i<<",N="<<colN[i]
231  <<",Z["<<i<<"]="<<colZ[i]<<G4endl;
232  //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
233 #endif
234  } // End of attampt to find the nucleus in DB
235  if(!in) // This nucleus has not been calculated previously
236  {
237 #ifdef debug
238  G4cout<<"G4QElCS::GetCrosSec:CalcNew P="<<pMom<<",f="<<fCS<<",lastI="<<lastI<<G4endl;
239 #endif
240  lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
242  if(lastCS<=0.)
243  {
244  lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
245 #ifdef debug
246  G4cout<<"G4QElCrossSection::GetCrossSect: NewThresh="<<lastTH<<",T="<<pEn<<G4endl;
247 #endif
248  if(pEn>lastTH)
249  {
250 #ifdef debug
251  G4cout<<"G4QElCS::GetCS: First T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
252 #endif
253  lastTH=pEn;
254  }
255  }
256 #ifdef debug
257  G4cout<<"G4QElCS::GetCrosSec: New CS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
258  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
259 #endif
260  colN.push_back(tgN);
261  colZ.push_back(tgZ);
262  colP.push_back(pMom);
263  colTH.push_back(lastTH);
264  colCS.push_back(lastCS);
265 #ifdef debug
266  G4cout<<"G4QElCS::GetCS:1st,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
267  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
268 #endif
269  return lastCS*millibarn;
270  } // End of creation of the new set of parameters
271  else
272  {
273 #ifdef debug
274  G4cout<<"G4QElCS::GetCS: Update lastI="<<lastI<<G4endl;
275 #endif
276  colP[lastI]=pMom;
277  colCS[lastI]=lastCS;
278  }
279 #ifdef debug
280  G4cout<<"G4QElCS::GetCrSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
281  //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
282  G4cout<<"G4QElCS::GetCrSec:***End***, onlyCS="<<onlyCS<<G4endl;
283 #endif
284  return lastCS*millibarn;
285 }
286 
287 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
288 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
290  G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
291 {
292  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
293  static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
294  // *** End of Static Definitions (Associative Memory Data Base) ***
295  G4double pMom=pIU/GeV; // All calculations are in GeV
296  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
297 #ifdef debug
298  G4cout<<"G4QPionPlusElasticCroS::CalcCS:->onlyCS="<<onlyCS<<",F="<<F<<",p="<<pIU<<G4endl;
299 #endif
300  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
301  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
302  {
303  if(F<0) // the AMDB must be loded
304  {
305  lastPIN = PIN[I]; // Max log(P) initialised for this table set
306  lastPAR = PAR[I]; // Pointer to the parameter set
307  lastCST = CST[I]; // Pointer to the total sross-section table
308  lastSST = SST[I]; // Pointer to the first squared slope
309  lastS1T = S1T[I]; // Pointer to the first mantissa
310  lastB1T = B1T[I]; // Pointer to the first slope
311  lastS2T = S2T[I]; // Pointer to the second mantissa
312  lastB2T = B2T[I]; // Pointer to the second slope
313  lastS3T = S3T[I]; // Pointer to the third mantissa
314  lastB3T = B3T[I]; // Pointer to the rhird slope
315  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
316  lastB4T = B4T[I]; // Pointer to the 4-th slope
317 #ifdef debug
318  G4cout<<"G4QElasticCS::CalcCS: DB is updated for I="<<I<<",*,PIN4="<<PIN[4]<<G4endl;
319 #endif
320  }
321 #ifdef debug
322  G4cout<<"G4QPionPlusElasticCroS::CalcCS:*read*, LP="<<lastLP<<",PIN="<<lastPIN<<G4endl;
323 #endif
324  if(lastLP>lastPIN && lastLP<lPMax)
325  {
326  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
327 #ifdef debug
328  G4cout<<"G4QElCS::CalcCS:*updated(I)*,LP="<<lastLP<<"<IN["<<I<<"]="<<lastPIN<<G4endl;
329 #endif
330  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
331  }
332  }
333  else // This isotope wasn't initialized => CREATE
334  {
335  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
336  lastPAR[nLast]=0; // Initialization for VALGRIND
337  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
338  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
339  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
340  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
341  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
342  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
343  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
344  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
345  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
346  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
347 #ifdef debug
348  G4cout<<"G4QPionPlusElasticCroS::CalcCS:*ini*,lastLP="<<lastLP<<",min="<<lPMin<<G4endl;
349 #endif
350  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
351 #ifdef debug
352  G4cout<<"G4QPiPlElCS::CCS:i,Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",LP"<<lastPIN<<G4endl;
353 #endif
354  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
355  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
356  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
357  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
358  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
359  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
360  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
361  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
362  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
363  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
364  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
365  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
366  } // End of creation/update of the new set of parameters and tables
367  // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
368 #ifdef debug
369  G4cout<<"G4QElCS::CalcCS:?update?,LP="<<lastLP<<",IN="<<lastPIN<<",ML="<<lPMax<<G4endl;
370 #endif
371  if(lastLP>lastPIN && lastLP<lPMax)
372  {
373  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
374 #ifdef debug
375  G4cout<<"G4QElCS::CalcCS: *updated(O)*, LP="<<lastLP<<" < IN="<<lastPIN<<G4endl;
376 #endif
377  }
378 #ifdef debug
379  G4cout<<"G4QElastCS::CalcCS: lastLP="<<lastLP<<",lPM="<<lPMin<<",lPIN="<<lastPIN<<G4endl;
380 #endif
381  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
382 #ifdef debug
383  G4cout<<"G4QElasticCrosSec::CalcCS:oCS="<<onlyCS<<",-t="<<lastTM<<", p="<<lastLP<<G4endl;
384 #endif
385  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
386  {
387  if(lastLP==lastPIN)
388  {
389  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
390  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
391  if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
392  lastSIG = lastCST[blast];
393  if(!onlyCS) // Skip the differential cross-section parameters
394  {
395  theSS = lastSST[blast];
396  theS1 = lastS1T[blast];
397  theB1 = lastB1T[blast];
398  theS2 = lastS2T[blast];
399  theB2 = lastB2T[blast];
400  theS3 = lastS3T[blast];
401  theB3 = lastB3T[blast];
402  theS4 = lastS4T[blast];
403  theB4 = lastB4T[blast];
404  }
405 #ifdef debug
406  G4cout<<"G4QPionPlusElasticCroS::CalculateCS:(E) S1="<<theS1<<", B1="<<theB1<<G4endl;
407 #endif
408  }
409  else
410  {
411  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
412  G4int blast=static_cast<int>(shift); // the lower bin number
413  if(blast<0) blast=0;
414  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
415  shift-=blast; // step inside the unit bin
416  G4int lastL=blast+1; // the upper bin number
417  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
418  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
419 #ifdef debug
420  G4cout<<"G4QElCS::CalcCrossSection: Sig="<<lastSIG<<", P="<<pMom<<", Z="<<tgZ<<", N="
421  <<tgN<<", PDG="<<PDG<<", onlyCS="<<onlyCS<<G4endl;
422 #endif
423  if(!onlyCS) // Skip the differential cross-section parameters
424  {
425  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
426  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
427  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
428  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
429  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
430 #ifdef debug
431  G4cout<<"G4QElCS::CalcCrossSection:bl="<<blast<<",ls="<<lastL<<",SL="<<S1TL<<",SU="
432  <<lastS1T[lastL]<<",BL="<<B1TL<<",BU="<<lastB1T[lastL]<<G4endl;
433 #endif
434  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
435  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
436  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
437  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
438  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
439  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
440  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
441 #ifdef debug
442  G4cout<<"G4QElCS::CCS: s3l="<<S3TL<<",sh3="<<shift<<",s3h="<<lastS3T[lastL]<<",b="
443  <<blast<<",l="<<lastL<<G4endl;
444 #endif
445  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
446  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
447  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
448  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
449 #ifdef debug
450  G4cout<<"G4QElCS::CCS: s4l="<<S4TL<<",sh4="<<shift<<",s4h="<<lastS4T[lastL]<<",b="
451  <<blast<<",l="<<lastL<<G4endl;
452 #endif
453  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
454  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
455  }
456 #ifdef debug
457  G4cout<<"G4QPionPlusElasticCroS::CalculateCS:(I) S1="<<theS1<<", B1="<<theB1<<G4endl;
458 #endif
459  }
460  }
461  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
462  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
463 #ifdef debug
464  G4cout<<"G4QPionPlusElasticCrossSection::CalculateCS: END, onlyCS="<<onlyCS<<G4endl;
465 #endif
466  return lastSIG;
467 }
468 
469 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
470 G4double G4QPionPlusElasticCrossSection::GetPTables(G4double LP, G4double ILP, G4int PDG,
471  G4int tgZ, G4int tgN)
472 {
473  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
474  static const G4double pwd=2727;
475  const G4int n_pippel=35; // #of parameters for pip_p-elastic (<nPoints=128)
476  // -0- -1- -2- -3- -4- -5- -6- -7--8--9--10-11-12--13-
477  G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
478  3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
479  3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
480  // -14--15--16--17--18- -19--20- -21- -22- -23- -24- -25-
481  // -26- -27- -28- -29- -30- -31- -32- -33- -34-
482  if(PDG == 211)
483  {
484  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
485  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
486  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
487  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
488  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
489  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
490  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
491  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
492  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
493  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
494  //
495  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
496  {
497  if ( tgZ == 1 && tgN == 0 )
498  {
499  for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
500  }
501  else
502  {
503  G4double a=tgZ+tgN;
504  G4double sa=std::sqrt(a);
505  G4double ssa=std::sqrt(sa);
506  G4double asa=a*sa;
507  G4double a2=a*a;
508  G4double a3=a2*a;
509  G4double a4=a3*a;
510  G4double a5=a4*a;
511  G4double a6=a4*a2;
512  G4double a7=a6*a;
513  G4double a8=a7*a;
514  G4double a9=a8*a;
515  G4double a10=a5*a5;
516  G4double a12=a6*a6;
517  G4double a14=a7*a7;
518  G4double a16=a8*a8;
519  G4double a17=a16*a;
520  //G4double a20=a16*a4;
521  G4double a32=a16*a16;
522  // Reaction cross-section parameters (pel=peh_fit.f)
523  lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1
524  lastPAR[1]=a/(1./4.4+1./a); // p2
525  lastPAR[2]=.22/std::pow(a,.33); // p3
526  lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4
527  lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2); // p5
528  lastPAR[5]=0.; // p6 not used
529  lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7
530  lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8
531  lastPAR[8]=0.; // p9 not used
532  // @@ the differential cross-section is parameterized separately for A>6 & A<7
533  if(a<6.5)
534  {
535  G4double a28=a16*a12;
536  // The main pre-exponent (pel_sg)
537  lastPAR[ 9]=4000*a; // p1
538  lastPAR[10]=1.2e7*a8+380*a17; // p2
539  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
540  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
541  lastPAR[13]=.28*a; // p5
542  lastPAR[14]=1.2*a2+2.3; // p6
543  lastPAR[15]=3.8/a; // p7
544  // The main slope (pel_sl)
545  lastPAR[16]=.01/(1.+.0024*a5); // p1
546  lastPAR[17]=.2*a; // p2
547  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
548  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
549  // The main quadratic (pel_sh)
550  lastPAR[20]=2.25*a3; // p1
551  lastPAR[21]=18.; // p2
552  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
553  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
554  // The 1st max pre-exponent (pel_qq)
555  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
556  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
557  lastPAR[26]=.0006*a3; // p3
558  // The 1st max slope (pel_qs)
559  lastPAR[27]=10.+4.e-8*a12*a; // p1
560  lastPAR[28]=.114; // p2
561  lastPAR[29]=.003; // p3
562  lastPAR[30]=2.e-23; // p4
563  // The effective pre-exponent (pel_ss)
564  lastPAR[31]=1./(1.+.0001*a8); // p1
565  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
566  lastPAR[33]=.03; // p3
567  // The effective slope (pel_sb)
568  lastPAR[34]=a/2; // p1
569  lastPAR[35]=2.e-7*a4; // p2
570  lastPAR[36]=4.; // p3
571  lastPAR[37]=64./a3; // p4
572  // The gloria pre-exponent (pel_us)
573  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
574  lastPAR[39]=20.*std::exp(.45*asa); // p2
575  lastPAR[40]=7.e3+2.4e6/a5; // p3
576  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
577  lastPAR[42]=2.5*a; // p5
578  // The gloria slope (pel_ub)
579  lastPAR[43]=920.+.03*a8*a3; // p1
580  lastPAR[44]=93.+.0023*a12; // p2
581 #ifdef debug
582  G4cout<<"G4QElCS::CalcCS:la "<<lastPAR[38]<<", "<<lastPAR[39]<<", "<<lastPAR[40]
583  <<", "<<lastPAR[42]<<", "<<lastPAR[43]<<", "<<lastPAR[44]<<G4endl;
584 #endif
585  }
586  else
587  {
588  G4double p1a10=2.2e-28*a10;
589  G4double r4a16=6.e14/a16;
590  G4double s4a16=r4a16*r4a16;
591  // a24
592  // a36
593  // The main pre-exponent (peh_sg)
594  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
595  lastPAR[10]=.06*std::pow(a,.6); // p2
596  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
597  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
598  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
599  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
600  // The main slope (peh_sl)
601  lastPAR[15]=400./a12+2.e-22*a9; // p1
602  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
603  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
604  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
605  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
606  lastPAR[20]=9.+100./a; // p6
607  // The main quadratic (peh_sh)
608  lastPAR[21]=.002*a3+3.e7/a6; // p1
609  lastPAR[22]=7.e-15*a4*asa; // p2
610  lastPAR[23]=9000./a4; // p3
611  // The 1st max pre-exponent (peh_qq)
612  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
613  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
614  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
615  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
616  // The 1st max slope (peh_qs)
617  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
618  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
619  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
620  lastPAR[31]=100./asa; // p4
621  // The 2nd max pre-exponent (peh_ss)
622  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
623  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
624  lastPAR[34]=1.3+3.e5/a4; // p3
625  lastPAR[35]=500./(a2+50.)+3; // p4
626  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
627  // The 2nd max slope (peh_sb)
628  lastPAR[37]=.4*asa+3.e-9*a6; // p1
629  lastPAR[38]=.0005*a5; // p2
630  lastPAR[39]=.002*a5; // p3
631  lastPAR[40]=10.; // p4
632  // The effective pre-exponent (peh_us)
633  lastPAR[41]=.05+.005*a; // p1
634  lastPAR[42]=7.e-8/sa; // p2
635  lastPAR[43]=.8*sa; // p3
636  lastPAR[44]=.02*sa; // p4
637  lastPAR[45]=1.e8/a3; // p5
638  lastPAR[46]=3.e32/(a32+1.e32); // p6
639  // The effective slope (peh_ub)
640  lastPAR[47]=24.; // p1
641  lastPAR[48]=20./sa; // p2
642  lastPAR[49]=7.e3*a/(sa+1.); // p3
643  lastPAR[50]=900.*sa/(1.+500./a3); // p4
644 #ifdef debug
645  G4cout<<"G4QElCS::CalcCS:ha "<<lastPAR[41]<<", "<<lastPAR[42]<<", "<<lastPAR[43]
646  <<", "<<lastPAR[44]<<", "<<lastPAR[45]<<", "<<lastPAR[46]<<G4endl;
647 #endif
648  }
649  // Parameter for lowEnergyNeutrons
650  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
651  }
652  lastPAR[nLast]=pwd;
653  // and initialize the zero element of the table
654  G4double lp=lPMin; // ln(momentum)
655  G4bool memCS=onlyCS; // ??
656  onlyCS=false;
657  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
658  onlyCS=memCS;
659  lastSST[0]=theSS;
660  lastS1T[0]=theS1;
661  lastB1T[0]=theB1;
662  lastS2T[0]=theS2;
663  lastB2T[0]=theB2;
664  lastS3T[0]=theS3;
665  lastB3T[0]=theB3;
666  lastS4T[0]=theS4;
667  lastB4T[0]=theB4;
668 #ifdef debug
669  G4cout<<"G4QPionPlusElasticCrossSection::GetPTables:ip=0(init), lp="<<lp<<",S1="
670  <<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB3<<",S3="<<theS3
671  <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
672 #endif
673  }
674  if(LP>ILP)
675  {
676  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
677  if(ini<0) ini=0;
678  if(ini<nPoints)
679  {
680  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
681  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
682  if(fin>=ini)
683  {
684  G4double lp=0.;
685  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
686  {
687  lp=lPMin+ip*dlnP; // ln(momentum)
688  G4bool memCS=onlyCS;
689  onlyCS=false;
690  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
691  onlyCS=memCS;
692  lastSST[ip]=theSS;
693  lastS1T[ip]=theS1;
694  lastB1T[ip]=theB1;
695  lastS2T[ip]=theS2;
696  lastB2T[ip]=theB2;
697  lastS3T[ip]=theS3;
698  lastB3T[ip]=theB3;
699  lastS4T[ip]=theS4;
700  lastB4T[ip]=theB4;
701 #ifdef debug
702  G4cout<<"G4QPionPlusElasticCrossSection::GetPTables:ip="<<ip<<",lp="<<lp
703  <<",S1="<<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB2<<",S3="
704  <<theS3<<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
705 #endif
706  }
707  return lp;
708  }
709  else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG
710  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
711  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
712  }
713  else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="
714  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
715  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
716  }
717 #ifdef debug
718  else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTabl:PDG="<<PDG<<", Z="<<tgZ
719  <<", N="<<tgN<<", LP="<<LP<<" <= ILP="<<ILP<<" nothing is done!"<<G4endl;
720 #endif
721  }
722  else
723  {
724  // G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="<<tgZ
725  // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
726  // throw G4QException("G4QPionPlusElasticCrossSection::GetPTables:only pipA implemented");
728  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
729  << ", while it is defined only for PDG=211 (pi+)" << G4endl;
730  G4Exception("G4QPionPlusElasticCrossSection::GetPTables()", "HAD_CHPS_0000",
731  FatalException, ed);
732  }
733  return ILP;
734 }
735 
736 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
738 {
739  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
740  static const G4double third=1./3.;
741  static const G4double fifth=1./5.;
742  static const G4double sevth=1./7.;
743 #ifdef tdebug
744  G4cout<<"G4QPiPlElCS::GetExcT: F="<<onlyCS<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
745 #endif
746  if(PDG!= 211)G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetExT:PDG="<<PDG<<G4endl;
747  if(onlyCS)G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetExchanT:onlyCS=1"<<G4endl;
748  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
749  G4double q2=0.;
750  if(tgZ==1 && tgN==0) // ===> p+p=p+p
751  {
752 #ifdef tdebug
753  G4cout<<"G4QElasticCS::GetExchangeT: TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",S2="
754  <<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",GeV2="<<GeVSQ<<G4endl;
755 #endif
756  G4double E1=lastTM*theB1;
757  G4double R1=(1.-std::exp(-E1));
758 #ifdef tdebug
759  G4double ts1=-std::log(1.-R1)/theB1;
760  G4double ds1=std::fabs(ts1-lastTM)/lastTM;
761  if(ds1>.0001)
762  G4cout<<"*Warning*G4QElCS::GetExT:1p "<<ts1<<"#"<<lastTM<<",d="<<ds1
763  <<",R1="<<R1<<",E1="<<E1<<G4endl;
764 #endif
765  G4double E2=lastTM*theB2;
766  G4double R2=(1.-std::exp(-E2*E2*E2));
767 #ifdef tdebug
768  G4double ts2=std::pow(-std::log(1.-R2),.333333333)/theB2;
769  G4double ds2=std::fabs(ts2-lastTM)/lastTM;
770  if(ds2>.0001)
771  G4cout<<"*Warning*G4QElCS::GetExT:2p "<<ts2<<"#"<<lastTM<<",d="<<ds2
772  <<",R2="<<R2<<",E2="<<E2<<G4endl;
773 #endif
774  G4double E3=lastTM*theB3;
775  G4double R3=(1.-std::exp(-E3));
776 #ifdef tdebug
777  G4double ts3=-std::log(1.-R3)/theB3;
778  G4double ds3=std::fabs(ts3-lastTM)/lastTM;
779  if(ds3>.0001)
780  G4cout<<"*Warning*G4QElCS::GetExT:3p "<<ts3<<"#"<<lastTM<<",d="<<ds3
781  <<",R3="<<R1<<",E3="<<E3<<G4endl;
782 #endif
783  G4double I1=R1*theS1/theB1;
784  G4double I2=R2*theS2;
785  G4double I3=R3*theS3;
786  G4double I12=I1+I2;
787  G4double rand=(I12+I3)*G4UniformRand();
788  if (rand<I1 )
789  {
790  G4double ran=R1*G4UniformRand();
791  if(ran>1.) ran=1.;
792  q2=-std::log(1.-ran)/theB1;
793  }
794  else if(rand<I12)
795  {
796  G4double ran=R2*G4UniformRand();
797  if(ran>1.) ran=1.;
798  q2=-std::log(1.-ran);
799  if(q2<0.) q2=0.;
800  q2=std::pow(q2,third)/theB2;
801  }
802  else
803  {
804  G4double ran=R3*G4UniformRand();
805  if(ran>1.) ran=1.;
806  q2=-std::log(1.-ran)/theB3;
807  }
808  }
809  else
810  {
811  G4double a=tgZ+tgN;
812 #ifdef tdebug
813  G4cout<<"G4QElCS::GetExT: a="<<a<<",t="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",SS="
814  <<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="
815  <<theS4<<",B4="<<theB4<<G4endl;
816 #endif
817  G4double E1=lastTM*(theB1+lastTM*theSS);
818  G4double R1=(1.-std::exp(-E1));
819  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
820 #ifdef tdebug
821  G4double ts1=-std::log(1.-R1)/theB1;
822  if(std::fabs(tss)>1.e-7) ts1=(std::sqrt(theB1*(theB1+(tss+tss)*ts1))-theB1)/tss;
823  G4double ds1=(ts1-lastTM)/lastTM;
824  if(ds1>.0001)
825  G4cout<<"*Warning*G4QElCS::GetExT:1a "<<ts1<<"#"<<lastTM<<",d="<<ds1
826  <<",R1="<<R1<<",E1="<<E1<<G4endl;
827 #endif
828  G4double tm2=lastTM*lastTM;
829  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
830  if(a>6.5)E2*=tm2; // for heavy nuclei
831  G4double R2=(1.-std::exp(-E2));
832 #ifdef tdebug
833  G4double ts2=-std::log(1.-R2)/theB2;
834  if(a<6.5)ts2=std::pow(ts2,third);
835  else ts2=std::pow(ts2,fifth);
836  G4double ds2=std::fabs(ts2-lastTM)/lastTM;
837  if(ds2>.0001)
838  G4cout<<"*Warning*G4QElCS::GetExT:2a "<<ts2<<"#"<<lastTM<<",d="<<ds2
839  <<",R2="<<R2<<",E2="<<E2<<G4endl;
840 #endif
841  G4double E3=lastTM*theB3;
842  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
843  G4double R3=(1.-std::exp(-E3));
844 #ifdef tdebug
845  G4double ts3=-std::log(1.-R3)/theB3;
846  if(a>6.5)ts3=std::pow(ts3,sevth);
847  G4double ds3=std::fabs(ts3-lastTM)/lastTM;
848  if(ds3>.0001)
849  G4cout<<"*Warning*G4QElCS::GetExT:3a "<<ts3<<"#"<<lastTM<<",d="<<ds3
850  <<",R3="<<R3<<",E3="<<E3<<G4endl;
851 #endif
852  G4double E4=lastTM*theB4;
853  G4double R4=(1.-std::exp(-E4));
854 #ifdef tdebug
855  G4double ts4=-std::log(1.-R4)/theB4;
856  G4double ds4=std::fabs(ts4-lastTM)/lastTM;
857  if(ds4>.0001)
858  G4cout<<"*Warning*G4QElCS::GetExT:4a "<<ts4<<"#"<<lastTM<<",d="<<ds4
859  <<",R4="<<R4<<",E4="<<E4<<G4endl;
860 #endif
861  G4double I1=R1*theS1;
862  G4double I2=R2*theS2;
863  G4double I3=R3*theS3;
864  G4double I4=R4*theS4;
865  G4double I12=I1+I2;
866  G4double I13=I12+I3;
867  G4double rand=(I13+I4)*G4UniformRand();
868 #ifdef tdebug
869  G4cout<<"G4QElCS::GtExT:1="<<I1<<",2="<<I2<<",3="<<I3<<",4="<<I4<<",r="<<rand<<G4endl;
870 #endif
871  if(rand<I1)
872  {
873  G4double ran=R1*G4UniformRand();
874  if(ran>1.) ran=1.;
875  q2=-std::log(1.-ran)/theB1;
876  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
877 #ifdef tdebug
878  G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",ss="<<tss/2<<",b1="<<theB1<<",t1="<<ts1<<G4endl;
879 #endif
880  }
881  else if(rand<I12)
882  {
883  G4double ran=R2*G4UniformRand();
884  if(ran>1.) ran=1.;
885  q2=-std::log(1.-ran)/theB2;
886  if(q2<0.) q2=0.;
887  if(a<6.5) q2=std::pow(q2,third);
888  else q2=std::pow(q2,fifth);
889 #ifdef tdebug
890  G4cout<<"G4QElCS::GetExT: Q2="<<q2<<", r2="<<R2<<", b2="<<theB2<<",t2="<<ts2<<G4endl;
891 #endif
892  }
893  else if(rand<I13)
894  {
895  G4double ran=R3*G4UniformRand();
896  if(ran>1.) ran=1.;
897  q2=-std::log(1.-ran)/theB3;
898  if(q2<0.) q2=0.;
899  if(a>6.5) q2=std::pow(q2,sevth);
900 #ifdef tdebug
901  G4cout<<"G4QElCS::GetExT:Q2="<<q2<<", r3="<<R2<<", b3="<<theB2<<",t3="<<ts2<<G4endl;
902 #endif
903  }
904  else
905  {
906  G4double ran=R4*G4UniformRand();
907  if(ran>1.) ran=1.;
908  q2=-std::log(1.-ran)/theB4;
909  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
910 #ifdef tdebug
911  G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",m="<<lastTM<<",b4="<<theB3<<",t4="<<ts3<<G4endl;
912 #endif
913  }
914  }
915  if(q2<0.) q2=0.;
916  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
917  if(q2>lastTM)
918  {
919 #ifdef tdebug
920  G4cout<<"*Warning*G4QElasticCrossSect::GetExT:-t="<<q2<<">"<<lastTM<<G4endl;
921 #endif
922  q2=lastTM;
923  }
924  return q2*GeVSQ;
925 }
926 
927 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
929 {
930  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
931 #ifdef tdebug
932  G4cout<<"G4QElasticCS::GetSlope:"<<onlyCS<<", Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
933 #endif
934  if(onlyCS)G4cout<<"Warning*G4QPionPlusElasticCrossSection::GetSlope:onlyCS=true"<<G4endl;
935  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
936  if(PDG != 211)
937  {
938  // G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetSlope: PDG="<<PDG<<", Z="<<tgZ
939  // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
940  // throw G4QException("G4QPionPlusElasticCrossSection::GetSlope: pipA are implemented");
942  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
943  << ", while it is defined only for PDG=211 (pi-)" << G4endl;
944  G4Exception("G4QPionPlusElasticCrossSection::GetSlope()", "HAD_CHPS_000",
945  FatalException, ed);
946  }
947  if(theB1<0.) theB1=0.;
948  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
949  return theB1/GeVSQ;
950 }
951 
952 // Returns half max(Q2=-t) in independent units (MeV^2)
954 {
955  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
956  return lastTM*HGeVSQ;
957 }
958 
959 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
960 G4double G4QPionPlusElasticCrossSection::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
961  G4int tgN)
962 {
963  if(PDG!= 211)G4cout<<"Warning*G4QPionPlusElasticCrossSection::GetTabV:PDG="<<PDG<<G4endl;
964  if(tgZ<0 || tgZ>92)
965  {
966  G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
967  return 0.;
968  }
969  G4int iZ=tgZ-1; // Z index
970  if(iZ<0)
971  {
972  iZ=0; // conversion of the neutron target to the proton target
973  tgZ=1;
974  tgN=0;
975  }
976  //if(nN[iZ][0] < 0)
977  //{
978 #ifdef isodebug
979  // G4cout<<"*Warning*G4QElasticCS::GetTabValue: No isotopes for Z="<<tgZ<<G4endl;
980 #endif
981  // return 0.;
982  //}
983 #ifdef debug
984  G4cout<<"G4QElasticCS::GetTabVal: lp="<<lp<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
985 #endif
986  G4double p=std::exp(lp); // momentum
987  G4double sp=std::sqrt(p); // sqrt(p)
988  G4double p2=p*p;
989  G4double p3=p2*p;
990  G4double p4=p2*p2;
991  if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
992  {
993  G4double dl2=lp-lastPAR[11];
994  theSS=lastPAR[34];
995  theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
996  (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
997  theB1=lastPAR[18]*std::pow(p,lastPAR[19])/(1.+lastPAR[20]/p3);
998  theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
999  theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp);
1000  theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
1001  theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]);
1002  theS4=0.;
1003  theB4=0.;
1004 #ifdef tdebug
1005  G4cout<<"G4QElasticCS::GetTableValues:(pp) TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1
1006  <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS1<<",B3="<<theB1<<G4endl;
1007 #endif
1008  // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
1009  G4double dl1=lp+lastPAR[0]; // lr
1010  G4double lr2=dl1*dl1; // lr2
1011  G4double dl3=lp-lastPAR[3]; // ld
1012  G4double dl4=lp-lastPAR[4]; // lm
1013  return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
1014  lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
1015  }
1016  else
1017  {
1018  G4double p5=p4*p;
1019  G4double p6=p5*p;
1020  G4double p8=p6*p2;
1021  G4double p10=p8*p2;
1022  G4double p12=p10*p2;
1023  G4double p16=p8*p8;
1024  //G4double p24=p16*p8;
1025  G4double dl=lp-5.;
1026  G4double a=tgZ+tgN;
1027  G4double pah=std::pow(p,a/2);
1028  G4double pa=pah*pah;
1029  G4double pa2=pa*pa;
1030  if(a<6.5)
1031  {
1032  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
1033  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
1034  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
1035  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
1036  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
1037  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
1038  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
1039  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
1040  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
1041  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
1042  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
1043 #ifdef tdebug
1044  G4cout<<"G4QElCS::GetTabV: lA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1045  <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1046  <<",B4="<<theB4<<G4endl;
1047 #endif
1048  }
1049  else
1050  {
1051  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
1052  lastPAR[13]/(p5+lastPAR[14]/p16);
1053  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
1054  lastPAR[17]/(1.+lastPAR[18]/p4);
1055  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
1056  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
1057  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
1058  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
1059  lastPAR[33]/(1.+lastPAR[34]/p6);
1060  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
1061  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
1062  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
1063  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
1064 #ifdef tdebug
1065  G4cout<<"G4QElCS::GetTabV: hA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1066  <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1067  <<",B4="<<theB4<<G4endl;
1068 #endif
1069  }
1070  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
1071 #ifdef tdebug
1072  G4cout<<"G4QElCS::GetTabV: PDG="<<PDG<<",P="<<p<<",N="<<tgN<<",Z="<<tgZ<<G4endl;
1073 #endif
1074  // p1 p2 p3
1075  return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
1076  lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
1077  // p4 p5 p7 p8
1078  }
1079  return 0.;
1080 } // End of GetTableValues
1081 
1082 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
1083 G4double G4QPionPlusElasticCrossSection::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
1084  G4double pP)
1085 {
1086  //static const G4double mNeut= G4QPDGCode(2112).GetMass()*.001; // MeV to GeV
1087  static const G4double mPi= G4QPDGCode(211).GetMass()*.001; // pion mass MeV to GeV
1088  //static const G4double mProt= G4QPDGCode(2212).GetMass()*.001; // MeV to GeV
1089  //static const G4double mLamb= G4QPDGCode(3122).GetMass()*.001; // MeV to GeV
1090  //static const G4double mHe3 = G4QPDGCode(2112).GetNuclMass(2,1,0)*.001; // MeV to GeV
1091  //static const G4double mAlph = G4QPDGCode(2112).GetNuclMass(2,2,0)*.001; // MeV to GeV
1092  //static const G4double mDeut = G4QPDGCode(2112).GetNuclMass(1,1,0)*.001; // MeV to GeV
1093  static const G4double mPi2= mPi*mPi;
1094  //static const G4double mProt2= mProt*mProt;
1095  //static const G4double mNeut2= mNeut*mNeut;
1096  //static const G4double mDeut2= mDeut*mDeut;
1097  G4double pP2=pP*pP; // squared momentum of the projectile
1098  if(tgZ || tgN>-1) // ---> pipA
1099  {
1100  G4double mt=G4QPDGCode(90000000+tgZ*1000+tgN).GetMass()*.001; // Target mass in GeV
1101  G4double dmt=mt+mt;
1102  G4double s_value=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam s
1103  return dmt*dmt*pP2/s_value;
1104  }
1105  else
1106  {
1107  // G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetQ2max:PDG="<<PDG<<", Z="<<tgZ<<",N="
1108  // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
1109  // throw G4QException("G4QPionPlusElasticCrossSection::GetQ2max: only pipA implemented");
1111  ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
1112  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
1113  G4Exception("G4QPionPlusElasticCrossSection::GetQ2max()", "HAD_CHPS_0000",
1114  FatalException, ed);
1115  return 0;
1116  }
1117 }