Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LELambdaInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // Hadronic Process: Lambda Inelastic Process
29 // J.L. Chuma, TRIUMF, 18-Feb-1997
30 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31 
32 #include <iostream>
33 
34 #include "G4LELambdaInelastic.hh"
35 #include "G4PhysicalConstants.hh"
36 #include "G4SystemOfUnits.hh"
37 #include "Randomize.hh"
38 
41 {
42  SetMinEnergy(0.0);
43  SetMaxEnergy(25.*GeV);
44  G4cout << "WARNING: model G4LELambdaInelastic is being deprecated and will\n"
45  << "disappear in Geant4 version 10.0" << G4endl;
46 }
47 
48 
50 {
51  outFile << "G4LELambdaInelastic is one of the Low Energy Parameterized\n"
52  << "(LEP) models used to implement inelastic Lambda scattering\n"
53  << "from nuclei. It is a re-engineered version of the GHEISHA\n"
54  << "code of H. Fesefeldt. It divides the initial collision\n"
55  << "products into backward- and forward-going clusters which are\n"
56  << "then decayed into final state hadrons. The model does not\n"
57  << "conserve energy on an event-by-event basis. It may be\n"
58  << "applied to lambdas with initial energies between 0 and 25\n"
59  << "GeV.\n";
60 }
61 
62 
65  G4Nucleus& targetNucleus)
66 {
67  const G4HadProjectile *originalIncident = &aTrack;
68 
69  // create the target particle
70 
71  G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
72 
73  if (verboseLevel > 1) {
74  const G4Material *targetMaterial = aTrack.GetMaterial();
75  G4cout << "G4LELambdaInelastic::ApplyYourself called" << G4endl;
76  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
77  G4cout << "target material = " << targetMaterial->GetName() << ", ";
78  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
79  << G4endl;
80  }
81 
82  // Fermi motion and evaporation
83  // As of Geant3, the Fermi energy calculation had not been done
84  G4double ek = originalIncident->GetKineticEnergy()/MeV;
85  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
86  G4ReactionProduct modifiedOriginal;
87  modifiedOriginal = *originalIncident;
88 
89  G4double tkin = targetNucleus.Cinema( ek );
90  ek += tkin;
91  modifiedOriginal.SetKineticEnergy( ek*MeV );
92  G4double et = ek + amas;
93  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
94  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
95  if (pp > 0.0) {
96  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
97  modifiedOriginal.SetMomentum( momentum * (p/pp) );
98  }
99 
100  // calculate black track energies
101  tkin = targetNucleus.EvaporationEffects(ek);
102  ek -= tkin;
103  modifiedOriginal.SetKineticEnergy(ek*MeV);
104  et = ek + amas;
105  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
106  pp = modifiedOriginal.GetMomentum().mag()/MeV;
107  if (pp > 0.0) {
108  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
109  modifiedOriginal.SetMomentum( momentum * (p/pp) );
110  }
111 
112  G4ReactionProduct currentParticle = modifiedOriginal;
113  G4ReactionProduct targetParticle;
114  targetParticle = *originalTarget;
115  currentParticle.SetSide(1); // incident always goes in forward hemisphere
116  targetParticle.SetSide(-1); // target always goes in backward hemisphere
117  G4bool incidentHasChanged = false;
118  G4bool targetHasChanged = false;
119  G4bool quasiElastic = false;
120  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
121  G4int vecLen = 0;
122  vec.Initialize(0);
123 
124  const G4double cutOff = 0.1;
125  if (currentParticle.GetKineticEnergy()/MeV > cutOff)
126  Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
127  incidentHasChanged, targetHasChanged, quasiElastic);
128 
129  CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
130  modifiedOriginal, targetNucleus, currentParticle,
131  targetParticle, incidentHasChanged, targetHasChanged,
132  quasiElastic);
133 
134  SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
135 
136  if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
137 
138  delete originalTarget;
139  return &theParticleChange;
140 }
141 
142 
143 void G4LELambdaInelastic::Cascade(
145  G4int& vecLen,
146  const G4HadProjectile* originalIncident,
147  G4ReactionProduct& currentParticle,
148  G4ReactionProduct& targetParticle,
149  G4bool& incidentHasChanged,
150  G4bool& targetHasChanged,
151  G4bool& quasiElastic)
152 {
153  // derived from original FORTRAN code CASL0 by H. Fesefeldt (13-Sep-1987)
154  //
155  // Lambda undergoes interaction with nucleon within a nucleus. Check if it
156  // is energetically possible to produce pions/kaons. In not, assume
157  // nuclear excitation occurs and input particle is degraded in energy. No
158  // other particles are produced. If reaction is possible, find the correct
159  // number of pions/protons/neutrons produced using an interpolation to
160  // multiplicity data. Replace some pions or protons/neutrons by kaons or
161  // strange baryons according to the average multiplicity per inelastic
162  // reaction.
163 
164  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
165  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
166  const G4double targetMass = targetParticle.GetMass()/MeV;
167  G4double centerofmassEnergy = std::sqrt(mOriginal*mOriginal +
168  targetMass*targetMass +
169  2.0*targetMass*etOriginal );
170  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
171  if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
172  quasiElastic = true;
173  return;
174  }
175  static G4bool first = true;
176  const G4int numMul = 1200;
177  const G4int numSec = 60;
178  static G4double protmul[numMul], protnorm[numSec]; // proton constants
179  static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
180 
181  // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
182  G4int counter, nt=0, npos=0, nneg=0, nzero=0;
183  G4double test;
184  const G4double c = 1.25;
185  const G4double b[] = { 0.70, 0.35 };
186  if( first ) { // compute normalization constants, this will only be Done once
187  first = false;
188  G4int i;
189  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
190  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
191  counter = -1;
192  for( npos=0; npos<(numSec/3); ++npos ) {
193  for( nneg=std::max(0,npos-2); nneg<=(npos+1); ++nneg ) {
194  for( nzero=0; nzero<numSec/3; ++nzero ) {
195  if( ++counter < numMul ) {
196  nt = npos+nneg+nzero;
197  if( nt>0 && nt<=numSec ) {
198  protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
199  protnorm[nt-1] += protmul[counter];
200  }
201  }
202  }
203  }
204  }
205  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
206  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
207  counter = -1;
208  for( npos=0; npos<numSec/3; ++npos ) {
209  for( nneg=std::max(0,npos-1); nneg<=(npos+2); ++nneg ) {
210  for( nzero=0; nzero<numSec/3; ++nzero ) {
211  if( ++counter < numMul ) {
212  nt = npos+nneg+nzero;
213  if( nt>0 && nt<=numSec ) {
214  neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
215  neutnorm[nt-1] += neutmul[counter];
216  }
217  }
218  }
219  }
220  }
221  for( i=0; i<numSec; ++i ) {
222  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
223  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
224  }
225  } // end of initialization
226 
227  const G4double expxu = 82.; // upper bound for arg. of exp
228  const G4double expxl = -expxu; // lower bound for arg. of exp
234 
235  // energetically possible to produce pion(s) --> inelastic scattering
236  // otherwise quasi-elastic scattering
237 
238  G4double n, anpn;
239  GetNormalizationConstant( availableEnergy, n, anpn );
240  G4double ran = G4UniformRand();
241  G4double dum, excs = 0.0;
242  if( targetParticle.GetDefinition() == aProton ) {
243  counter = -1;
244  for( npos=0; npos<numSec/3 && ran>=excs; ++npos ) {
245  for( nneg=std::max(0,npos-2); nneg<=(npos+1) && ran>=excs; ++nneg ) {
246  for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero ) {
247  if( ++counter < numMul ) {
248  nt = npos+nneg+nzero;
249  if( nt>0 && nt<=numSec ) {
250  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
251  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
252  if( std::fabs(dum) < 1.0 ) {
253  if( test >= 1.0e-10 )excs += dum*test;
254  } else {
255  excs += dum*test;
256  }
257  }
258  }
259  }
260  }
261  }
262  if( ran >= excs ) // 3 previous loops continued to the end
263  {
264  quasiElastic = true;
265  return;
266  }
267  npos--; nneg--; nzero--;
268  G4int ncht = std::max( 1, npos-nneg );
269  switch( ncht ) {
270  case 1:
271  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
272  incidentHasChanged = true;
273  break;
274  case 2:
275  if( G4UniformRand() < 0.5 ) {
276  if( G4UniformRand() < 0.5 ) {
277  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
278  incidentHasChanged = true;
279  }
280  } else {
281  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
282  incidentHasChanged = true;
283  targetParticle.SetDefinitionAndUpdateE( aNeutron );
284  targetHasChanged = true;
285  }
286  break;
287  case 3:
288  if( G4UniformRand() < 0.5 ) {
289  if( G4UniformRand() < 0.5 ) {
290  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
291  incidentHasChanged = true;
292  }
293  targetParticle.SetDefinitionAndUpdateE( aNeutron );
294  targetHasChanged = true;
295  } else {
296  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
297  incidentHasChanged = true;
298  }
299  break;
300  default:
301  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
302  incidentHasChanged = true;
303  targetParticle.SetDefinitionAndUpdateE( aNeutron );
304  targetHasChanged = true;
305  break;
306  }
307  }
308  else // target must be a neutron
309  {
310  counter = -1;
311  for( npos=0; npos<numSec/3 && ran>=excs; ++npos ) {
312  for( nneg=std::max(0,npos-1); nneg<=(npos+2) && ran>=excs; ++nneg ) {
313  for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero ) {
314  if( ++counter < numMul ) {
315  nt = npos+nneg+nzero;
316  if( nt>0 && nt<=numSec ) {
317  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
318  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
319  if( std::fabs(dum) < 1.0 ) {
320  if( test >= 1.0e-10 )excs += dum*test;
321  } else {
322  excs += dum*test;
323  }
324  }
325  }
326  }
327  }
328  }
329  if( ran >= excs ) // 3 previous loops continued to the end
330  {
331  quasiElastic = true;
332  return;
333  }
334  npos--; nneg--; nzero--;
335  G4int ncht = std::max( 1, npos-nneg+3 );
336  switch( ncht ) {
337  case 1:
338  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
339  incidentHasChanged = true;
340  targetParticle.SetDefinitionAndUpdateE( aProton );
341  targetHasChanged = true;
342  break;
343  case 2:
344  if( G4UniformRand() < 0.5 ) {
345  if( G4UniformRand() < 0.5 ) {
346  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
347  incidentHasChanged = true;
348  }
349  targetParticle.SetDefinitionAndUpdateE( aProton );
350  targetHasChanged = true;
351  } else {
352  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
353  incidentHasChanged = true;
354  }
355  break;
356  case 3:
357  if( G4UniformRand() < 0.5 ) {
358  if( G4UniformRand() < 0.5 ) {
359  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
360  incidentHasChanged = true;
361  }
362  } else {
363  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
364  incidentHasChanged = true;
365  targetParticle.SetDefinitionAndUpdateE( aProton );
366  targetHasChanged = true;
367  }
368  break;
369  default:
370  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
371  incidentHasChanged = true;
372  break;
373  }
374  }
375 
376  SetUpPions( npos, nneg, nzero, vec, vecLen );
377  return;
378 }