Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
geometry
magneticfield
src
G4HelixImplicitEuler.cc
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id: G4HelixImplicitEuler.cc 69786 2013-05-15 09:38:51Z gcosmo $
28
//
29
//
30
// Helix Implicit Euler:
31
// x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0)
32
// + helix(h,t_0+h,x_0+helix(h,t0,x0) ) )
33
// Second order solver.
34
// Take the current derivative and add it to the current position.
35
// Take the output and its derivative. Add the mean of both derivatives
36
// to form the final output
37
//
38
// W.Wander <wwc@mit.edu> 12/09/97
39
//
40
// -------------------------------------------------------------------------
41
42
#include "
G4HelixImplicitEuler.hh
"
43
#include "
G4ThreeVector.hh
"
44
45
void
46
G4HelixImplicitEuler::DumbStepper
(
const
G4double
yIn[],
47
G4ThreeVector
Bfld,
48
G4double
h,
49
G4double
yOut[])
50
{
51
const
G4int
nvar = 6 ;
52
G4double
yTemp[6], yTemp2[6];
53
G4ThreeVector
Bfld_endpoint;
54
55
G4int
i;
56
57
// Step forward like in the explicit euler case
58
AdvanceHelix
( yIn, Bfld, h, yTemp);
59
60
// now obtain the new field value at the new point
61
MagFieldEvaluate
(yTemp, Bfld_endpoint);
62
63
// and also advance along a helix for this field value
64
AdvanceHelix
( yIn, Bfld_endpoint, h, yTemp2);
65
66
// we take the average
67
for
( i = 0; i < nvar; i++ )
68
yOut[i] = 0.5 * ( yTemp[i] + yTemp2[i] );
69
70
// NormaliseTangentVector( yOut );
71
}
Generated on Sat May 25 2013 14:33:10 for Geant4 by
1.8.4