Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
geometry
magneticfield
src
G4HelixExplicitEuler.cc
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id: G4HelixExplicitEuler.cc 69786 2013-05-15 09:38:51Z gcosmo $
28
//
29
//
30
// Helix Explicit Euler: x_1 = x_0 + helix(h)
31
// with helix(h) being a helix piece of length h
32
// most simple approach for solving linear differential equations.
33
// Take the current derivative and add it to the current position.
34
//
35
// W.Wander <wwc@mit.edu> 12/09/97
36
// -------------------------------------------------------------------
37
38
#include "
G4HelixExplicitEuler.hh
"
39
#include "
G4PhysicalConstants.hh
"
40
#include "
G4ThreeVector.hh
"
41
42
43
void
G4HelixExplicitEuler::Stepper
(
const
G4double
yInput[7],
44
const
G4double
*,
45
G4double
Step
,
46
G4double
yOut[7],
47
G4double
yErr[])
48
49
{
50
51
//Estimation of the Stepping Angle
52
53
G4ThreeVector
Bfld;
54
MagFieldEvaluate
(yInput, Bfld);
55
56
const
G4int
nvar = 6 ;
57
G4int
i;
58
G4double
yTemp[7], yIn[7] ;
59
G4ThreeVector
Bfld_midpoint;
60
// Saving yInput because yInput and yOut can be aliases for same array
61
for
(i=0;i<nvar;i++) yIn[i]=yInput[i];
62
63
G4double
h = Step * 0.5;
64
65
// Do full step and two half steps
66
G4double
yTemp2[7];
67
AdvanceHelix
(yIn, Bfld, h, yTemp2,yTemp);
68
MagFieldEvaluate
(yTemp2, Bfld_midpoint) ;
69
AdvanceHelix
(yTemp2, Bfld_midpoint, h, yOut);
70
71
// Error estimation
72
for
(i=0;i<nvar;i++) {
73
yErr[i] = yOut[i] - yTemp[i] ;
74
}
75
76
}
77
78
G4double
G4HelixExplicitEuler::DistChord
()
const
79
{
80
// Implementation : must check whether h/R > 2 pi !!
81
// If( h/R < pi) use G4LineSection::DistLine
82
// Else DistChord=R_helix
83
//
84
G4double
distChord;
85
G4double
Ang_curve=
GetAngCurve
();
86
87
88
if
(Ang_curve<=
pi
){
89
distChord=
GetRadHelix
()*(1-std::cos(0.5*Ang_curve));
90
}
91
else
92
if
(Ang_curve<
twopi
){
93
distChord=
GetRadHelix
()*(1+std::cos(0.5*(
twopi
-Ang_curve)));
94
}
95
else
{
96
distChord=2.*
GetRadHelix
();
97
}
98
99
return
distChord;
100
101
}
102
void
103
G4HelixExplicitEuler::DumbStepper
(
const
G4double
yIn[],
104
G4ThreeVector
Bfld,
105
G4double
h,
106
G4double
yOut[])
107
{
108
109
AdvanceHelix
(yIn, Bfld, h, yOut);
110
111
}
Generated on Sat May 25 2013 14:33:10 for Geant4 by
1.8.4