Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
global
HEPNumerics
include
G4GaussLegendreQ.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id$
28
//
29
// Class description:
30
//
31
// Class for Gauss-Legendre integration method
32
// Roots of ortogonal polynoms and corresponding weights are calculated based on
33
// iteration method (by bisection Newton algorithm). Constant values for initial
34
// approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
35
// of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
36
// 10, and 22 .
37
//
38
// ------------------------- CONSTRUCTORS: -------------------------------
39
//
40
// Constructor for GaussLegendre quadrature method. The value nLegendre set the
41
// accuracy required, i.e the number of points where the function pFunction will
42
// be evaluated during integration. The constructor creates the arrays for
43
// abscissas and weights that used in Gauss-Legendre quadrature method.
44
// The values a and b are the limits of integration of the pFunction.
45
//
46
// G4GaussLegendreQ( function pFunction,
47
// G4int nLegendre )
48
//
49
// -------------------------- METHODS: ---------------------------------------
50
//
51
// Returns the integral of the function to be pointed by fFunction between a and b,
52
// by 2*fNumber point Gauss-Legendre integration: the function is evaluated exactly
53
// 2*fNumber Times at interior points in the range of integration. Since the weights
54
// and abscissas are, in this case, symmetric around the midpoint of the range of
55
// integration, there are actually only fNumber distinct values of each.
56
//
57
// G4double Integral(G4double a, G4double b) const
58
//
59
// -----------------------------------------------------------------------
60
//
61
// Returns the integral of the function to be pointed by fFunction between a and b,
62
// by ten point Gauss-Legendre integration: the function is evaluated exactly
63
// ten Times at interior points in the range of integration. Since the weights
64
// and abscissas are, in this case, symmetric around the midpoint of the range of
65
// integration, there are actually only five distinct values of each
66
//
67
// G4double
68
// QuickIntegral(G4double a, G4double b) const
69
//
70
// ---------------------------------------------------------------------
71
//
72
// Returns the integral of the function to be pointed by fFunction between a and b,
73
// by 96 point Gauss-Legendre integration: the function is evaluated exactly
74
// ten Times at interior points in the range of integration. Since the weights
75
// and abscissas are, in this case, symmetric around the midpoint of the range of
76
// integration, there are actually only five distinct values of each
77
//
78
// G4double
79
// AccurateIntegral(G4double a, G4double b) const
80
81
// ------------------------------- HISTORY --------------------------------
82
//
83
// 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
84
85
#ifndef G4GAUSSLEGENDREQ_HH
86
#define G4GAUSSLEGENDREQ_HH
87
88
#include "
G4VGaussianQuadrature.hh
"
89
90
class
G4GaussLegendreQ
:
public
G4VGaussianQuadrature
91
{
92
public
:
93
explicit
G4GaussLegendreQ
(
function
pFunction ) ;
94
95
96
G4GaussLegendreQ
(
function
pFunction,
97
G4int
nLegendre ) ;
98
99
// Methods
100
101
G4double
Integral
(
G4double
a
,
G4double
b
)
const
;
102
103
G4double
QuickIntegral
(
G4double
a,
G4double
b)
const
;
104
105
G4double
AccurateIntegral
(
G4double
a,
G4double
b)
const
;
106
107
private
:
108
109
G4GaussLegendreQ
(
const
G4GaussLegendreQ
&);
110
G4GaussLegendreQ
& operator=(
const
G4GaussLegendreQ
&);
111
};
112
113
#endif
Generated on Sat May 25 2013 14:33:17 for Geant4 by
1.8.4