Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ChipsKaonPlusElasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 //
30 // G4 Physics class: G4ChipsKaonPlusElasticXS for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the elastic process.
36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37 // -------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4KaonPlus.hh"
45 #include "G4Nucleus.hh"
46 #include "G4ParticleTable.hh"
47 #include "G4NucleiProperties.hh"
48 
49 // factory
50 #include "G4CrossSectionFactory.hh"
51 //
53 
54 G4ChipsKaonPlusElasticXS::G4ChipsKaonPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
55 {
56  lPMin=-8.; //Min tabulatedLogarithmMomentum/D
57  lPMax= 8.; //Max tabulatedLogarithmMomentum/D
58  dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D
59  onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L
60  lastSIG=0.; //Last calculated cross section /L
61  lastLP=-10.;//LastLog(mom_of IncidentHadron)/L
62  lastTM=0.; //Last t_maximum /L
63  theSS=0.; //TheLastSqSlope of 1st difr.Max/L
64  theS1=0.; //TheLastMantissa of 1st difrMax/L
65  theB1=0.; //TheLastSlope of 1st difructMax/L
66  theS2=0.; //TheLastMantissa of 2nd difrMax/L
67  theB2=0.; //TheLastSlope of 2nd difructMax/L
68  theS3=0.; //TheLastMantissa of 3d difr.Max/L
69  theB3=0.; //TheLastSlope of 3d difruct.Max/L
70  theS4=0.; //TheLastMantissa of 4th difrMax/L
71  theB4=0.; //TheLastSlope of 4th difructMax/L
72  lastTZ=0; // Last atomic number of theTarget
73  lastTN=0; // Last # of neutrons in theTarget
74  lastPIN=0.;// Last initialized max momentum
75  lastCST=0; // Elastic cross-section table
76  lastPAR=0; // ParametersForFunctionCalculation
77  lastSST=0; // E-dep ofSqardSlope of 1st difMax
78  lastS1T=0; // E-dep of mantissa of 1st dif.Max
79  lastB1T=0; // E-dep of the slope of 1st difMax
80  lastS2T=0; // E-dep of mantissa of 2nd difrMax
81  lastB2T=0; // E-dep of the slope of 2nd difMax
82  lastS3T=0; // E-dep of mantissa of 3d difr.Max
83  lastB3T=0; // E-dep of the slope of 3d difrMax
84  lastS4T=0; // E-dep of mantissa of 4th difrMax
85  lastB4T=0; // E-dep of the slope of 4th difMax
86  lastN=0; // The last N of calculated nucleus
87  lastZ=0; // The last Z of calculated nucleus
88  lastP=0.; // LastUsed inCrossSection Momentum
89  lastTH=0.; // Last threshold momentum
90  lastCS=0.; // Last value of the Cross Section
91  lastI=0; // The last position in the DAMDB
92 }
93 
95 {
96  std::vector<G4double*>::iterator pos;
97  for (pos=CST.begin(); pos<CST.end(); pos++)
98  { delete [] *pos; }
99  CST.clear();
100  for (pos=PAR.begin(); pos<PAR.end(); pos++)
101  { delete [] *pos; }
102  PAR.clear();
103  for (pos=SST.begin(); pos<SST.end(); pos++)
104  { delete [] *pos; }
105  SST.clear();
106  for (pos=S1T.begin(); pos<S1T.end(); pos++)
107  { delete [] *pos; }
108  S1T.clear();
109  for (pos=B1T.begin(); pos<B1T.end(); pos++)
110  { delete [] *pos; }
111  B1T.clear();
112  for (pos=S2T.begin(); pos<S2T.end(); pos++)
113  { delete [] *pos; }
114  S2T.clear();
115  for (pos=B2T.begin(); pos<B2T.end(); pos++)
116  { delete [] *pos; }
117  B2T.clear();
118  for (pos=S3T.begin(); pos<S3T.end(); pos++)
119  { delete [] *pos; }
120  S3T.clear();
121  for (pos=B3T.begin(); pos<B3T.end(); pos++)
122  { delete [] *pos; }
123  B3T.clear();
124  for (pos=S4T.begin(); pos<S4T.end(); pos++)
125  { delete [] *pos; }
126  S4T.clear();
127  for (pos=B4T.begin(); pos<B4T.end(); pos++)
128  { delete [] *pos; }
129  B4T.clear();
130 }
131 
133  const G4Element*,
134  const G4Material*)
135 {
136  G4ParticleDefinition* particle = Pt->GetDefinition();
137  if (particle == G4KaonPlus::KaonPlus() ) return true;
138  return false;
139 }
140 
141 // The main member function giving the collision cross section (P is in IU, CS is in mb)
142 // Make pMom in independent units ! (Now it is MeV)
144  const G4Isotope*,
145  const G4Element*,
146  const G4Material*)
147 {
148  G4double pMom=Pt->GetTotalMomentum();
149  G4int tgN = A - tgZ;
150 
151  return GetChipsCrossSection(pMom, tgZ, tgN, 321);
152 }
153 
155 {
156  static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
157  static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
158  static std::vector <G4double> colP; // Vector of last momenta for the reaction
159  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
160  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
161  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
162 
163  G4bool fCS = false;
164  G4double pEn=pMom;
165  onlyCS=fCS;
166 
167  G4bool in=false; // By default the isotope must be found in the AMDB
168  lastP = 0.; // New momentum history (nothing to compare with)
169  lastN = tgN; // The last N of the calculated nucleus
170  lastZ = tgZ; // The last Z of the calculated nucleus
171  lastI = colN.size(); // Size of the Associative Memory DB in the heap
172  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
173  { // The nucleus with projPDG is found in AMDB
174  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
175  {
176  lastI=i;
177  lastTH =colTH[i]; // Last THreshold (A-dependent)
178  if(pEn<=lastTH)
179  {
180  return 0.; // Energy is below the Threshold value
181  }
182  lastP =colP [i]; // Last Momentum (A-dependent)
183  lastCS =colCS[i]; // Last CrossSect (A-dependent)
184  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
185  if(lastP == pMom) // Do not recalculate
186  {
187  CalculateCrossSection(fCS,-1,i,321,lastZ,lastN,pMom); // Update param's only
188  return lastCS*millibarn; // Use theLastCS
189  }
190  in = true; // This is the case when the isotop is found in DB
191  // Momentum pMom is in IU ! @@ Units
192  lastCS=CalculateCrossSection(fCS,-1,i,321,lastZ,lastN,pMom); // read & update
193  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
194  {
195  lastTH=pEn;
196  }
197  break; // Go out of the LOOP with found lastI
198  }
199  } // End of attampt to find the nucleus in DB
200  if(!in) // This nucleus has not been calculated previously
201  {
203  lastCS=CalculateCrossSection(fCS,0,lastI,321,lastZ,lastN,pMom);//calculate&create
204  if(lastCS<=0.)
205  {
206  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
207  if(pEn>lastTH)
208  {
209  lastTH=pEn;
210  }
211  }
212  colN.push_back(tgN);
213  colZ.push_back(tgZ);
214  colP.push_back(pMom);
215  colTH.push_back(lastTH);
216  colCS.push_back(lastCS);
217  return lastCS*millibarn;
218  } // End of creation of the new set of parameters
219  else
220  {
221  colP[lastI]=pMom;
222  colCS[lastI]=lastCS;
223  }
224  return lastCS*millibarn;
225 }
226 
227 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
228 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
229 G4double G4ChipsKaonPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F,
230  G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
231 {
232  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
233  static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
234  // *** End of Static Definitions (Associative Memory Data Base) ***
235  G4double pMom=pIU/GeV; // All calculations are in GeV
236  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
237  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
238  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
239  {
240  if(F<0) // the AMDB must be loded
241  {
242  lastPIN = PIN[I]; // Max log(P) initialised for this table set
243  lastPAR = PAR[I]; // Pointer to the parameter set
244  lastCST = CST[I]; // Pointer to the total sross-section table
245  lastSST = SST[I]; // Pointer to the first squared slope
246  lastS1T = S1T[I]; // Pointer to the first mantissa
247  lastB1T = B1T[I]; // Pointer to the first slope
248  lastS2T = S2T[I]; // Pointer to the second mantissa
249  lastB2T = B2T[I]; // Pointer to the second slope
250  lastS3T = S3T[I]; // Pointer to the third mantissa
251  lastB3T = B3T[I]; // Pointer to the rhird slope
252  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
253  lastB4T = B4T[I]; // Pointer to the 4-th slope
254  }
255  if(lastLP>lastPIN && lastLP<lPMax)
256  {
257  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
258  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
259  }
260  }
261  else // This isotope wasn't initialized => CREATE
262  {
263  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
264  lastPAR[nLast]=0; // Initialization for VALGRIND
265  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
266  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
267  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
268  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
269  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
270  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
271  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
272  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
273  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
274  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
275  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
276  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
277  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
278  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
279  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
280  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
281  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
282  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
283  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
284  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
285  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
286  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
287  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
288  } // End of creation/update of the new set of parameters and tables
289  // =----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
290  if(lastLP>lastPIN && lastLP<lPMax)
291  {
292  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
293  }
294  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
295  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
296  {
297  if(lastLP==lastPIN)
298  {
299  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
300  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
301  if(blast<0 || blast>=nLast) G4cout<<"G4QKPElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl;
302  lastSIG = lastCST[blast];
303  if(!onlyCS) // Skip the differential cross-section parameters
304  {
305  theSS = lastSST[blast];
306  theS1 = lastS1T[blast];
307  theB1 = lastB1T[blast];
308  theS2 = lastS2T[blast];
309  theB2 = lastB2T[blast];
310  theS3 = lastS3T[blast];
311  theB3 = lastB3T[blast];
312  theS4 = lastS4T[blast];
313  theB4 = lastB4T[blast];
314  }
315  }
316  else
317  {
318  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
319  G4int blast=static_cast<int>(shift); // the lower bin number
320  if(blast<0) blast=0;
321  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
322  shift-=blast; // step inside the unit bin
323  G4int lastL=blast+1; // the upper bin number
324  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
325  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
326  if(!onlyCS) // Skip the differential cross-section parameters
327  {
328  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
329  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
330  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
331  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
332  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
333  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
334  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
335  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
336  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
337  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
338  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
339  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
340  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
341  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
342  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
343  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
344  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
345  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
346  }
347  }
348  }
349  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
350  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
351  return lastSIG;
352 }
353 
354 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
355 G4double G4ChipsKaonPlusElasticXS::GetPTables(G4double LP,G4double ILP, G4int PDG,
356  G4int tgZ, G4int tgN)
357 {
358  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
359  static const G4double pwd=2727;
360  const G4int n_kppel=35; // #of parameters for pp-elastic (<nPoints=128)
361  // -0--1- -2- -3- -4- -5- -6--7--8--9- -10--11-12--13--14-
362  G4double kpp_el[n_kppel]={.7,.38,.0676,.0557,3.5,2.23,.7,.1,2.,1.,.372,5.,74.,3.,3.4,
363  .2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,
364  5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
365  // -15--16--17--18--19- -20- -21- -22- -23- -24- -25- -26-
366  // -27- -28- -29- -30- -31- -32- -33--34-
367 
368  if(PDG == 321)
369  {
370  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
371  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
372  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
373  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
374  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
375  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
376  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
377  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
378  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
379  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
380  //
381  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
382  {
383  if ( tgZ == 1 && tgN == 0 )
384  {
385  for (G4int ip=0; ip<n_kppel; ip++) lastPAR[ip]=kpp_el[ip]; // KPlus+P
386  }
387  else
388  {
389  G4double a=tgZ+tgN;
390  G4double sa=std::sqrt(a);
391  G4double ssa=std::sqrt(sa);
392  G4double asa=a*sa;
393  G4double a2=a*a;
394  G4double a3=a2*a;
395  G4double a4=a3*a;
396  G4double a5=a4*a;
397  G4double a6=a4*a2;
398  G4double a7=a6*a;
399  G4double a8=a7*a;
400  G4double a9=a8*a;
401  G4double a10=a5*a5;
402  G4double a12=a6*a6;
403  G4double a14=a7*a7;
404  G4double a16=a8*a8;
405  G4double a17=a16*a;
406  //G4double a20=a16*a4;
407  G4double a32=a16*a16;
408  // Reaction cross-section parameters (kpael_fit.f)
409  lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa)); // p1
410  lastPAR[1]=.75*asa/(1.+.009*a); // p2
411  lastPAR[2]=.9*asa*ssa/(1.+.03*a); // p3
412  lastPAR[3]=3.; // p4
413  lastPAR[4]=4.2; // p5
414  lastPAR[5]=0.; // p6 not used
415  lastPAR[6]=0.; // p7 not used
416  lastPAR[7]=0.; // p8 not used
417  lastPAR[8]=0.; // p9 not used
418  // @@ the differential cross-section is parameterized separately for A>6 & A<7
419  if(a<6.5)
420  {
421  G4double a28=a16*a12;
422  // The main pre-exponent (pel_sg)
423  lastPAR[ 9]=4000*a; // p1
424  lastPAR[10]=1.2e7*a8+380*a17; // p2
425  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
426  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
427  lastPAR[13]=.28*a; // p5
428  lastPAR[14]=1.2*a2+2.3; // p6
429  lastPAR[15]=3.8/a; // p7
430  // The main slope (pel_sl)
431  lastPAR[16]=.01/(1.+.0024*a5); // p1
432  lastPAR[17]=.2*a; // p2
433  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
434  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
435  // The main quadratic (pel_sh)
436  lastPAR[20]=2.25*a3; // p1
437  lastPAR[21]=18.; // p2
438  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
439  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
440  // The 1st max pre-exponent (pel_qq)
441  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
442  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
443  lastPAR[26]=.0006*a3; // p3
444  // The 1st max slope (pel_qs)
445  lastPAR[27]=10.+4.e-8*a12*a; // p1
446  lastPAR[28]=.114; // p2
447  lastPAR[29]=.003; // p3
448  lastPAR[30]=2.e-23; // p4
449  // The effective pre-exponent (pel_ss)
450  lastPAR[31]=1./(1.+.0001*a8); // p1
451  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
452  lastPAR[33]=.03; // p3
453  // The effective slope (pel_sb)
454  lastPAR[34]=a/2; // p1
455  lastPAR[35]=2.e-7*a4; // p2
456  lastPAR[36]=4.; // p3
457  lastPAR[37]=64./a3; // p4
458  // The gloria pre-exponent (pel_us)
459  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
460  lastPAR[39]=20.*std::exp(.45*asa); // p2
461  lastPAR[40]=7.e3+2.4e6/a5; // p3
462  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
463  lastPAR[42]=2.5*a; // p5
464  // The gloria slope (pel_ub)
465  lastPAR[43]=920.+.03*a8*a3; // p1
466  lastPAR[44]=93.+.0023*a12; // p2
467  }
468  else
469  {
470  G4double p1a10=2.2e-28*a10;
471  G4double r4a16=6.e14/a16;
472  G4double s4a16=r4a16*r4a16;
473  // a24
474  // a36
475  // The main pre-exponent (peh_sg)
476  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
477  lastPAR[10]=.06*std::pow(a,.6); // p2
478  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
479  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
480  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
481  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
482  // The main slope (peh_sl)
483  lastPAR[15]=400./a12+2.e-22*a9; // p1
484  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
485  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
486  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
487  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
488  lastPAR[20]=9.+100./a; // p6
489  // The main quadratic (peh_sh)
490  lastPAR[21]=.002*a3+3.e7/a6; // p1
491  lastPAR[22]=7.e-15*a4*asa; // p2
492  lastPAR[23]=9000./a4; // p3
493  // The 1st max pre-exponent (peh_qq)
494  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
495  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
496  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
497  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
498  // The 1st max slope (peh_qs)
499  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
500  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
501  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
502  lastPAR[31]=100./asa; // p4
503  // The 2nd max pre-exponent (peh_ss)
504  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
505  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
506  lastPAR[34]=1.3+3.e5/a4; // p3
507  lastPAR[35]=500./(a2+50.)+3; // p4
508  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
509  // The 2nd max slope (peh_sb)
510  lastPAR[37]=.4*asa+3.e-9*a6; // p1
511  lastPAR[38]=.0005*a5; // p2
512  lastPAR[39]=.002*a5; // p3
513  lastPAR[40]=10.; // p4
514  // The effective pre-exponent (peh_us)
515  lastPAR[41]=.05+.005*a; // p1
516  lastPAR[42]=7.e-8/sa; // p2
517  lastPAR[43]=.8*sa; // p3
518  lastPAR[44]=.02*sa; // p4
519  lastPAR[45]=1.e8/a3; // p5
520  lastPAR[46]=3.e32/(a32+1.e32); // p6
521  // The effective slope (peh_ub)
522  lastPAR[47]=24.; // p1
523  lastPAR[48]=20./sa; // p2
524  lastPAR[49]=7.e3*a/(sa+1.); // p3
525  lastPAR[50]=900.*sa/(1.+500./a3); // p4
526  }
527  // Parameter for lowEnergyNeutrons
528  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
529  }
530  lastPAR[nLast]=pwd;
531  // and initialize the zero element of the table
532  G4double lp=lPMin; // ln(momentum)
533  G4bool memCS=onlyCS; // ??
534  onlyCS=false;
535  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
536  onlyCS=memCS;
537  lastSST[0]=theSS;
538  lastS1T[0]=theS1;
539  lastB1T[0]=theB1;
540  lastS2T[0]=theS2;
541  lastB2T[0]=theB2;
542  lastS3T[0]=theS3;
543  lastB3T[0]=theB3;
544  lastS4T[0]=theS4;
545  lastB4T[0]=theB4;
546  }
547  if(LP>ILP)
548  {
549  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
550  if(ini<0) ini=0;
551  if(ini<nPoints)
552  {
553  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
554  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
555  if(fin>=ini)
556  {
557  G4double lp=0.;
558  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
559  {
560  lp=lPMin+ip*dlnP; // ln(momentum)
561  G4bool memCS=onlyCS;
562  onlyCS=false;
563  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
564  onlyCS=memCS;
565  lastSST[ip]=theSS;
566  lastS1T[ip]=theS1;
567  lastB1T[ip]=theB1;
568  lastS2T[ip]=theS2;
569  lastB2T[ip]=theB2;
570  lastS3T[ip]=theS3;
571  lastB3T[ip]=theB3;
572  lastS4T[ip]=theS4;
573  lastB4T[ip]=theB4;
574  }
575  return lp;
576  }
577  else G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetPTables: PDG="<<PDG
578  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
579  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
580  }
581  else G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetPTables: PDG="<<PDG
582  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
583  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
584  }
585  }
586  else
587  {
588  // G4cout<<"*Error*G4ChipsKaonPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
589  // <<", N="<<tgN<<", while it is defined only for PDG=321"<<G4endl;
590  // throw G4QException("G4ChipsKaonPlusElasticXS::GetPTables:onlyK+ is implemented");
592  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
593  << ", while it is defined only for PDG=321 (K+) " << G4endl;
594  G4Exception("G4ChipsKaonPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
595  FatalException, ed);
596  }
597  return ILP;
598 }
599 
600 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
602 {
603  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
604  static const G4double third=1./3.;
605  static const G4double fifth=1./5.;
606  static const G4double sevth=1./7.;
607  if(PDG!=321) G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
608  if(onlyCS) G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetExT: onlyCS=1"<<G4endl;
609  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
610  G4double q2=0.;
611  if(tgZ==1 && tgN==0) // ===> p+p=p+p
612  {
613  G4double E1=lastTM*theB1;
614  G4double R1=(1.-std::exp(-E1));
615  G4double E2=lastTM*theB2;
616  G4double R2=(1.-std::exp(-E2*E2*E2));
617  G4double E3=lastTM*theB3;
618  G4double R3=(1.-std::exp(-E3));
619  G4double I1=R1*theS1/theB1;
620  G4double I2=R2*theS2;
621  G4double I3=R3*theS3;
622  G4double I12=I1+I2;
623  G4double rand=(I12+I3)*G4UniformRand();
624  if (rand<I1 )
625  {
626  G4double ran=R1*G4UniformRand();
627  if(ran>1.) ran=1.;
628  q2=-std::log(1.-ran)/theB1;
629  }
630  else if(rand<I12)
631  {
632  G4double ran=R2*G4UniformRand();
633  if(ran>1.) ran=1.;
634  q2=-std::log(1.-ran);
635  if(q2<0.) q2=0.;
636  q2=std::pow(q2,third)/theB2;
637  }
638  else
639  {
640  G4double ran=R3*G4UniformRand();
641  if(ran>1.) ran=1.;
642  q2=-std::log(1.-ran)/theB3;
643  }
644  }
645  else
646  {
647  G4double a=tgZ+tgN;
648  G4double E1=lastTM*(theB1+lastTM*theSS);
649  G4double R1=(1.-std::exp(-E1));
650  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
651  G4double tm2=lastTM*lastTM;
652  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
653  if(a>6.5)E2*=tm2; // for heavy nuclei
654  G4double R2=(1.-std::exp(-E2));
655  G4double E3=lastTM*theB3;
656  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
657  G4double R3=(1.-std::exp(-E3));
658  G4double E4=lastTM*theB4;
659  G4double R4=(1.-std::exp(-E4));
660  G4double I1=R1*theS1;
661  G4double I2=R2*theS2;
662  G4double I3=R3*theS3;
663  G4double I4=R4*theS4;
664  G4double I12=I1+I2;
665  G4double I13=I12+I3;
666  G4double rand=(I13+I4)*G4UniformRand();
667  if(rand<I1)
668  {
669  G4double ran=R1*G4UniformRand();
670  if(ran>1.) ran=1.;
671  q2=-std::log(1.-ran)/theB1;
672  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
673  }
674  else if(rand<I12)
675  {
676  G4double ran=R2*G4UniformRand();
677  if(ran>1.) ran=1.;
678  q2=-std::log(1.-ran)/theB2;
679  if(q2<0.) q2=0.;
680  if(a<6.5) q2=std::pow(q2,third);
681  else q2=std::pow(q2,fifth);
682  }
683  else if(rand<I13)
684  {
685  G4double ran=R3*G4UniformRand();
686  if(ran>1.) ran=1.;
687  q2=-std::log(1.-ran)/theB3;
688  if(q2<0.) q2=0.;
689  if(a>6.5) q2=std::pow(q2,sevth);
690  }
691  else
692  {
693  G4double ran=R4*G4UniformRand();
694  if(ran>1.) ran=1.;
695  q2=-std::log(1.-ran)/theB4;
696  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
697  }
698  }
699  if(q2<0.) q2=0.;
700  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaonPlusElasticCS::GetExchT: -t="<<q2<<G4endl;
701  if(q2>lastTM)
702  {
703  q2=lastTM;
704  }
705  return q2*GeVSQ;
706 }
707 
708 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
709 G4double G4ChipsKaonPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
710 {
711  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
712  if(onlyCS)G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetSl:onlCS=true"<<G4endl;
713  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
714  if(PDG != 321)
715  {
717  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
718  << ", while it is defined only for PDG=321 (K+)" << G4endl;
719  G4Exception("G4ChipsKaonPlusElasticXS::GetSlope()", "HAD_CHPS_0000",
720  FatalException, ed);
721  }
722  if(theB1<0.) theB1=0.;
723  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QKaonPlusElCS::GetSlope:B1="<<theB1<<G4endl;
724  return theB1/GeVSQ;
725 }
726 
727 // Returns half max(Q2=-t) in independent units (MeV^2)
728 G4double G4ChipsKaonPlusElasticXS::GetHMaxT()
729 {
730  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
731  return lastTM*HGeVSQ;
732 }
733 
734 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
735 G4double G4ChipsKaonPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
736  G4int tgN)
737 {
738  if(PDG!=321)G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetTaV:PDG="<<PDG<<G4endl;
739  if(tgZ<0 || tgZ>92)
740  {
741  G4cout<<"*Warning*G4QKaonPlusElasticCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl;
742  return 0.;
743  }
744  G4int iZ=tgZ-1; // Z index
745  if(iZ<0)
746  {
747  iZ=0; // conversion of the neutron target to the proton target
748  tgZ=1;
749  tgN=0;
750  }
751  G4double p=std::exp(lp); // momentum
752  G4double sp=std::sqrt(p); // sqrt(p)
753  G4double p2=p*p;
754  G4double p3=p2*p;
755  G4double p4=p3*p;
756  if ( tgZ == 1 && tgN == 0 ) // KaonPlus+P
757  {
758  G4double dl2=lp-lastPAR[11];
759  theSS=lastPAR[34];
760  theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
761  (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
762  theB1=lastPAR[18]*std::pow(p,lastPAR[19])/(1.+lastPAR[20]/p3);
763  theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
764  theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp);
765  theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
766  theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]);
767  theS4=0.;
768  theB4=0.;
769  // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
770  G4double dp=lp-lastPAR[4];
771 //G4cout<<"lastPAR[8] "<<lastPAR[8]<<" lastPAR[9] "<<lastPAR[9]<<" lastPAR[10] "<<lastPAR[10]<<G4endl;
772  return lastPAR[0]/(lastPAR[2]+sqr(p-lastPAR[1]))+(lastPAR[3]*dp*dp+lastPAR[5])/
773  (1.-lastPAR[6]/sp+lastPAR[7]/p4)
774  +lastPAR[8]/(sqr(p-lastPAR[9])+lastPAR[10]); // Uzhi
775 
776  }
777  else
778  {
779  G4double p5=p4*p;
780  G4double p6=p5*p;
781  G4double p8=p6*p2;
782  G4double p10=p8*p2;
783  G4double p12=p10*p2;
784  G4double p16=p8*p8;
785  //G4double p24=p16*p8;
786  G4double dl=lp-5.;
787  G4double a=tgZ+tgN;
788  G4double pah=std::pow(p,a/2);
789  G4double pa=pah*pah;
790  G4double pa2=pa*pa;
791  if(a<6.5)
792  {
793  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
794  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
795  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
796  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
797  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
798  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
799  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
800  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
801  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
802  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
803  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
804  }
805  else
806  {
807  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
808  lastPAR[13]/(p5+lastPAR[14]/p16);
809  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
810  lastPAR[17]/(1.+lastPAR[18]/p4);
811  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
812  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
813  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
814  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
815  lastPAR[33]/(1.+lastPAR[34]/p6);
816  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
817  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
818  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
819  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
820  }
821  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
822  G4double dlp=lp-lastPAR[4]; // ax
823  // p1 p2 p3 p4
824  return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p2)/(1.+lastPAR[3]/p2/sp);
825  }
826  return 0.;
827 } // End of GetTableValues
828 
829 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
830 G4double G4ChipsKaonPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
831  G4double pP)
832 {
833  static const G4double mK= G4KaonPlus::KaonPlus()->GetPDGMass()*.001; // MeV to GeV
834  static const G4double mK2= mK*mK;
835 
836  G4double pP2=pP*pP; // squared momentum of the projectile
837  if(tgZ || tgN>-1) // ---> pipA
838  {
839  G4double mt=G4ParticleTable::GetParticleTable()->FindIon(tgZ,tgZ+tgN,0,tgZ)->GetPDGMass()*.001; // Target mass in GeV
840 
841  G4double dmt=mt+mt;
842  G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt*mt; // Mondelstam mds
843  return dmt*dmt*pP2/mds;
844  }
845  else
846  {
848  ed << "PDG = " << PDG << ",Z = " << tgZ << ", N = " << tgN
849  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
850  G4Exception("G4ChipsKaonPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
851  FatalException, ed);
852  return 0;
853  }
854 }