Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ChipsHyperonElasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 //
30 // G4 Physics class: G4ChipsHyperonElasticXS for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the elastic process.
36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37 // -------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4Lambda.hh"
45 #include "G4SigmaPlus.hh"
46 #include "G4SigmaMinus.hh"
47 #include "G4SigmaZero.hh"
48 #include "G4XiMinus.hh"
49 #include "G4XiZero.hh"
50 #include "G4OmegaMinus.hh"
51 #include "G4Nucleus.hh"
52 #include "G4ParticleTable.hh"
53 #include "G4NucleiProperties.hh"
54 
55 // factory
56 #include "G4CrossSectionFactory.hh"
57 //
59 
60 G4ChipsHyperonElasticXS::G4ChipsHyperonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
61 {
62  lPMin=-8.; //Min tabulatedLogarithmMomentum(D)
63  lPMax= 8.; //Max tabulatedLogarithmMomentum(D)
64  dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
65  onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
66  lastSIG=0.; //Last calculated cross section (L)
67  lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
68  lastTM=0.; //Last t_maximum (L)
69  theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
70  theS1=0.; //TheLastMantissa of 1st difrMax(L)
71  theB1=0.; //TheLastSlope of 1st difructMax(L)
72  theS2=0.; //TheLastMantissa of 2nd difrMax(L)
73  theB2=0.; //TheLastSlope of 2nd difructMax(L)
74  theS3=0.; //TheLastMantissa of 3d difr.Max(L)
75  theB3=0.; //TheLastSlope of 3d difruct.Max(L)
76  theS4=0.; //TheLastMantissa of 4th difrMax(L)
77  theB4=0.; //TheLastSlope of 4th difructMax(L)
78  lastTZ=0; // Last atomic number of the target
79  lastTN=0; // Last # of neutrons in the target
80  lastPIN=0.; // Last initialized max momentum
81  lastCST=0; // Elastic cross-section table
82  lastPAR=0; // ParametersForFunctionCalculation
83  lastSST=0; // E-dep ofSqardSlope of 1st difMax
84  lastS1T=0; // E-dep of mantissa of 1st dif.Max
85  lastB1T=0; // E-dep of the slope of 1st difMax
86  lastS2T=0; // E-dep of mantissa of 2nd difrMax
87  lastB2T=0; // E-dep of the slope of 2nd difMax
88  lastS3T=0; // E-dep of mantissa of 3d difr.Max
89  lastB3T=0; // E-dep of the slope of 3d difrMax
90  lastS4T=0; // E-dep of mantissa of 4th difrMax
91  lastB4T=0; // E-dep of the slope of 4th difMax
92  lastN=0; // The last N of calculated nucleus
93  lastZ=0; // The last Z of calculated nucleus
94  lastP=0.; // LastUsed inCrossSection Momentum
95  lastTH=0.; // Last threshold momentum
96  lastCS=0.; // Last value of the Cross Section
97  lastI=0; // The last position in the DAMDB
98 }
99 
101 {
102  std::vector<G4double*>::iterator pos;
103  for (pos=CST.begin(); pos<CST.end(); pos++)
104  { delete [] *pos; }
105  CST.clear();
106  for (pos=PAR.begin(); pos<PAR.end(); pos++)
107  { delete [] *pos; }
108  PAR.clear();
109  for (pos=SST.begin(); pos<SST.end(); pos++)
110  { delete [] *pos; }
111  SST.clear();
112  for (pos=S1T.begin(); pos<S1T.end(); pos++)
113  { delete [] *pos; }
114  S1T.clear();
115  for (pos=B1T.begin(); pos<B1T.end(); pos++)
116  { delete [] *pos; }
117  B1T.clear();
118  for (pos=S2T.begin(); pos<S2T.end(); pos++)
119  { delete [] *pos; }
120  S2T.clear();
121  for (pos=B2T.begin(); pos<B2T.end(); pos++)
122  { delete [] *pos; }
123  B2T.clear();
124  for (pos=S3T.begin(); pos<S3T.end(); pos++)
125  { delete [] *pos; }
126  S3T.clear();
127  for (pos=B3T.begin(); pos<B3T.end(); pos++)
128  { delete [] *pos; }
129  B3T.clear();
130  for (pos=S4T.begin(); pos<S4T.end(); pos++)
131  { delete [] *pos; }
132  S4T.clear();
133  for (pos=B4T.begin(); pos<B4T.end(); pos++)
134  { delete [] *pos; }
135  B4T.clear();
136 }
137 
139  const G4Element*,
140  const G4Material*)
141 {
142  G4ParticleDefinition* particle = Pt->GetDefinition();
143  if (particle == G4Lambda::Lambda())
144  {
145  return true;
146  }
147  else if(particle == G4SigmaPlus::SigmaPlus())
148  {
149  return true;
150  }
151  else if(particle == G4SigmaMinus::SigmaMinus())
152  {
153  return true;
154  }
155  else if(particle == G4SigmaZero::SigmaZero())
156  {
157  return true;
158  }
159  else if(particle == G4XiMinus::XiMinus())
160  {
161  return true;
162  }
163  else if(particle == G4XiZero::XiZero())
164  {
165  return true;
166  }
167  else if(particle == G4OmegaMinus::OmegaMinus())
168  {
169  return true;
170  }
171  return false;
172 }
173 
174 // The main member function giving the collision cross section (P is in IU, CS is in mb)
175 // Make pMom in independent units ! (Now it is MeV)
177  const G4Isotope*,
178  const G4Element*,
179  const G4Material*)
180 {
181  G4double pMom=Pt->GetTotalMomentum();
182  G4int tgN = A - tgZ;
183  G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
184 
185  return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
186 }
187 
189 {
190  static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
191  static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
192  static std::vector <G4double> colP; // Vector of last momenta for the reaction
193  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
194  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
195  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
196 
197  G4bool fCS = false;
198  G4double pEn=pMom;
199 
200  onlyCS=fCS;
201 
202  G4bool in=false; // By default the isotope must be found in the AMDB
203  lastP = 0.; // New momentum history (nothing to compare with)
204  lastN = tgN; // The last N of the calculated nucleus
205  lastZ = tgZ; // The last Z of the calculated nucleus
206  lastI = colN.size(); // Size of the Associative Memory DB in the heap
207  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
208  { // The nucleus with projPDG is found in AMDB
209  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
210  {
211  lastI=i;
212  lastTH =colTH[i]; // Last THreshold (A-dependent)
213  if(pEn<=lastTH)
214  {
215  return 0.; // Energy is below the Threshold value
216  }
217  lastP =colP [i]; // Last Momentum (A-dependent)
218  lastCS =colCS[i]; // Last CrossSect (A-dependent)
219  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
220  if(lastP == pMom) // Do not recalculate
221  {
222  CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
223  return lastCS*millibarn; // Use theLastCS
224  }
225  in = true; // This is the case when the isotop is found in DB
226  // Momentum pMom is in IU ! @@ Units
227  lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
228  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
229  {
230  lastTH=pEn;
231  }
232  break; // Go out of the LOOP with found lastI
233  }
234  } // End of attampt to find the nucleus in DB
235  if(!in) // This nucleus has not been calculated previously
236  {
238  lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
239  if(lastCS<=0.)
240  {
241  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
242  if(pEn>lastTH)
243  {
244  lastTH=pEn;
245  }
246  }
247  colN.push_back(tgN);
248  colZ.push_back(tgZ);
249  colP.push_back(pMom);
250  colTH.push_back(lastTH);
251  colCS.push_back(lastCS);
252  return lastCS*millibarn;
253  } // End of creation of the new set of parameters
254  else
255  {
256  colP[lastI]=pMom;
257  colCS[lastI]=lastCS;
258  }
259  return lastCS*millibarn;
260 }
261 
262 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
263 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
264 G4double G4ChipsHyperonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
265  G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
266 {
267  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
268  static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
269  // *** End of Static Definitions (Associative Memory Data Base) ***
270  G4double pMom=pIU/GeV; // All calculations are in GeV
271  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
272  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
273  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
274  {
275  if(F<0) // the AMDB must be loded
276  {
277  lastPIN = PIN[I]; // Max log(P) initialised for this table set
278  lastPAR = PAR[I]; // Pointer to the parameter set
279 
280  lastCST = CST[I]; // Pointer to the total sross-section table
281  lastSST = SST[I]; // Pointer to the first squared slope
282  lastS1T = S1T[I]; // Pointer to the first mantissa
283  lastB1T = B1T[I]; // Pointer to the first slope
284  lastS2T = S2T[I]; // Pointer to the second mantissa
285  lastB2T = B2T[I]; // Pointer to the second slope
286  lastS3T = S3T[I]; // Pointer to the third mantissa
287  lastB3T = B3T[I]; // Pointer to the rhird slope
288  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
289  lastB4T = B4T[I]; // Pointer to the 4-th slope
290  }
291  if(lastLP>lastPIN && lastLP<lPMax)
292  {
293  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
294  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
295  }
296  }
297  else // This isotope wasn't initialized => CREATE
298  {
299  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
300  lastPAR[nLast]=0; // Initialization for VALGRIND
301  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
302  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
303  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
304  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
305  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
306  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
307  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
308  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
309  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
310  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
311  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
312  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
313  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
314  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
315  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
316  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
317  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
318  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
319  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
320  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
321  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
322  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
323  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
324  } // End of creation/update of the new set of parameters and tables
325  // =-----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
326  if(lastLP>lastPIN && lastLP<lPMax)
327  {
328  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
329  }
330  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
331  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
332  {
333  if(lastLP==lastPIN)
334  {
335  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
336  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
337  if(blast<0 || blast>=nLast)G4cout<<"G4QHyperElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
338  lastSIG = lastCST[blast];
339  if(!onlyCS) // Skip the differential cross-section parameters
340  {
341  theSS = lastSST[blast];
342  theS1 = lastS1T[blast];
343  theB1 = lastB1T[blast];
344  theS2 = lastS2T[blast];
345  theB2 = lastB2T[blast];
346  theS3 = lastS3T[blast];
347  theB3 = lastB3T[blast];
348  theS4 = lastS4T[blast];
349  theB4 = lastB4T[blast];
350  }
351  }
352  else
353  {
354  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
355  G4int blast=static_cast<int>(shift); // the lower bin number
356  if(blast<0) blast=0;
357  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
358  shift-=blast; // step inside the unit bin
359  G4int lastL=blast+1; // the upper bin number
360  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
361  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
362  if(!onlyCS) // Skip the differential cross-section parameters
363  {
364  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
365  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
366  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
367  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
368  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
369  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
370  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
371  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
372  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
373  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
374  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
375  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
376  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
377  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
378  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
379  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
380  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
381  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
382  }
383  }
384  }
385  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
386  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
387  return lastSIG;
388 }
389 
390 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
391 G4double G4ChipsHyperonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
392  G4int tgZ, G4int tgN)
393 {
394  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
395  static const G4double pwd=2727;
396  const G4int n_hypel=33; // #of parameters for pp-elastic (<nPoints=128)
397  // -0- -1- -2- -3- -4- -5- -6--7--8--9--10--11--12-13--14-
398  G4double hyp_el[n_hypel]={1.,.002,.12,.0557,3.5,6.72,99.,2.,3.,5.,74.,3.,3.4,.2,.17,
399  .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,
400  1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
401  // -15--16- -17- -18- -19- -20- -21- -22- -23- -24- -25-
402  // -26- -27- -28- -29- -30- -31- -32-
403  if(PDG!=3222 && PDG>3000 && PDG<3335)
404  {
405  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
406  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
407  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
408  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
409  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
410  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
411  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
412  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
413  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
414  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
415  //
416  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
417  {
418  if ( tgZ == 1 && tgN == 0 )
419  {
420  for (G4int ip=0; ip<n_hypel; ip++) lastPAR[ip]=hyp_el[ip]; // Hyperon+P
421  }
422  else
423  {
424  G4double a=tgZ+tgN;
425  G4double sa=std::sqrt(a);
426  G4double ssa=std::sqrt(sa);
427  G4double asa=a*sa;
428  G4double a2=a*a;
429  G4double a3=a2*a;
430  G4double a4=a3*a;
431  G4double a5=a4*a;
432  G4double a6=a4*a2;
433  G4double a7=a6*a;
434  G4double a8=a7*a;
435  G4double a9=a8*a;
436  G4double a10=a5*a5;
437  G4double a12=a6*a6;
438  G4double a14=a7*a7;
439  G4double a16=a8*a8;
440  G4double a17=a16*a;
441  //G4double a20=a16*a4;
442  G4double a32=a16*a16;
443  // Reaction cross-section parameters (pel=peh_fit.f)
444  lastPAR[0]=4./(1.+22/asa); // p1
445  lastPAR[1]=2.36*asa/(1.+a*.055/ssa); // p2
446  lastPAR[2]=(1.+.00007*a3/ssa)/(1.+.0026*a2); // p3
447  lastPAR[3]=1.76*a/ssa+.00003*a3; // p4
448  lastPAR[4]=(.03+200./a3)/(1.+1.E5/a3/sa); // p5
449  lastPAR[5]=5.; // p6
450  lastPAR[6]=0.; // p7 not used
451  lastPAR[7]=0.; // p8 not used
452  lastPAR[8]=0.; // p9 not used
453  // @@ the differential cross-section is parameterized separately for A>6 & A<7
454  if(a<6.5)
455  {
456  G4double a28=a16*a12;
457  // The main pre-exponent (pel_sg)
458  lastPAR[ 9]=4000*a; // p1
459  lastPAR[10]=1.2e7*a8+380*a17; // p2
460  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
461  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
462  lastPAR[13]=.28*a; // p5
463  lastPAR[14]=1.2*a2+2.3; // p6
464  lastPAR[15]=3.8/a; // p7
465  // The main slope (pel_sl)
466  lastPAR[16]=.01/(1.+.0024*a5); // p1
467  lastPAR[17]=.2*a; // p2
468  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
469  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
470  // The main quadratic (pel_sh)
471  lastPAR[20]=2.25*a3; // p1
472  lastPAR[21]=18.; // p2
473  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
474  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
475  // The 1st max pre-exponent (pel_qq)
476  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
477  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
478  lastPAR[26]=.0006*a3; // p3
479  // The 1st max slope (pel_qs)
480  lastPAR[27]=10.+4.e-8*a12*a; // p1
481  lastPAR[28]=.114; // p2
482  lastPAR[29]=.003; // p3
483  lastPAR[30]=2.e-23; // p4
484  // The effective pre-exponent (pel_ss)
485  lastPAR[31]=1./(1.+.0001*a8); // p1
486  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
487  lastPAR[33]=.03; // p3
488  // The effective slope (pel_sb)
489  lastPAR[34]=a/2; // p1
490  lastPAR[35]=2.e-7*a4; // p2
491  lastPAR[36]=4.; // p3
492  lastPAR[37]=64./a3; // p4
493  // The gloria pre-exponent (pel_us)
494  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
495  lastPAR[39]=20.*std::exp(.45*asa); // p2
496  lastPAR[40]=7.e3+2.4e6/a5; // p3
497  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
498  lastPAR[42]=2.5*a; // p5
499  // The gloria slope (pel_ub)
500  lastPAR[43]=920.+.03*a8*a3; // p1
501  lastPAR[44]=93.+.0023*a12; // p2
502  }
503  else
504  {
505  G4double p1a10=2.2e-28*a10;
506  G4double r4a16=6.e14/a16;
507  G4double s4a16=r4a16*r4a16;
508  // a24
509  // a36
510  // The main pre-exponent (peh_sg)
511  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
512  lastPAR[10]=.06*std::pow(a,.6); // p2
513  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
514  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
515  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
516  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
517  // The main slope (peh_sl)
518  lastPAR[15]=400./a12+2.e-22*a9; // p1
519  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
520  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
521  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
522  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
523  lastPAR[20]=9.+100./a; // p6
524  // The main quadratic (peh_sh)
525  lastPAR[21]=.002*a3+3.e7/a6; // p1
526  lastPAR[22]=7.e-15*a4*asa; // p2
527  lastPAR[23]=9000./a4; // p3
528  // The 1st max pre-exponent (peh_qq)
529  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
530  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
531  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
532  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
533  // The 1st max slope (peh_qs)
534  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
535  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
536  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
537  lastPAR[31]=100./asa; // p4
538  // The 2nd max pre-exponent (peh_ss)
539  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
540  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
541  lastPAR[34]=1.3+3.e5/a4; // p3
542  lastPAR[35]=500./(a2+50.)+3; // p4
543  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
544  // The 2nd max slope (peh_sb)
545  lastPAR[37]=.4*asa+3.e-9*a6; // p1
546  lastPAR[38]=.0005*a5; // p2
547  lastPAR[39]=.002*a5; // p3
548  lastPAR[40]=10.; // p4
549  // The effective pre-exponent (peh_us)
550  lastPAR[41]=.05+.005*a; // p1
551  lastPAR[42]=7.e-8/sa; // p2
552  lastPAR[43]=.8*sa; // p3
553  lastPAR[44]=.02*sa; // p4
554  lastPAR[45]=1.e8/a3; // p5
555  lastPAR[46]=3.e32/(a32+1.e32); // p6
556  // The effective slope (peh_ub)
557  lastPAR[47]=24.; // p1
558  lastPAR[48]=20./sa; // p2
559  lastPAR[49]=7.e3*a/(sa+1.); // p3
560  lastPAR[50]=900.*sa/(1.+500./a3); // p4
561  }
562  // Parameter for lowEnergyNeutrons
563  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
564  }
565  lastPAR[nLast]=pwd;
566  // and initialize the zero element of the table
567  G4double lp=lPMin; // ln(momentum)
568  G4bool memCS=onlyCS; // ??
569  onlyCS=false;
570  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
571  onlyCS=memCS;
572  lastSST[0]=theSS;
573  lastS1T[0]=theS1;
574  lastB1T[0]=theB1;
575  lastS2T[0]=theS2;
576  lastB2T[0]=theB2;
577  lastS3T[0]=theS3;
578  lastB3T[0]=theB3;
579  lastS4T[0]=theS4;
580  lastB4T[0]=theB4;
581  }
582  if(LP>ILP)
583  {
584  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
585  if(ini<0) ini=0;
586  if(ini<nPoints)
587  {
588  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
589  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
590  if(fin>=ini)
591  {
592  G4double lp=0.;
593  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
594  {
595  lp=lPMin+ip*dlnP; // ln(momentum)
596  G4bool memCS=onlyCS;
597  onlyCS=false;
598  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
599  onlyCS=memCS;
600  lastSST[ip]=theSS;
601  lastS1T[ip]=theS1;
602  lastB1T[ip]=theB1;
603  lastS2T[ip]=theS2;
604  lastB2T[ip]=theB2;
605  lastS3T[ip]=theS3;
606  lastB3T[ip]=theB3;
607  lastS4T[ip]=theS4;
608  lastB4T[ip]=theB4;
609  }
610  return lp;
611  }
612  else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
613  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
614  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
615  }
616  else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
617  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
618  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
619  }
620  } else {
621  // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
622  // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
623  // throw G4QException("G4ChipsHyperonElasticXS::GetPTables:onlyaBA implemented");
625  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
626  << ", while it is defined only for Hyperons" << G4endl;
627  G4Exception("G4ChipsHyperonElasticXS::GetPTables()", "HAD_CHPS_0000",
628  FatalException, ed);
629  }
630  return ILP;
631 }
632 
633 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
635 {
636  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
637  static const G4double third=1./3.;
638  static const G4double fifth=1./5.;
639  static const G4double sevth=1./7.;
640  if(PDG==3222 || PDG<3000 || PDG>3334)G4cout<<"*Warning*G4QHyElCS::GET:PDG="<<PDG<<G4endl;
641  if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetExchanT: onlyCS=1"<<G4endl;
642  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
643  G4double q2=0.;
644  if(tgZ==1 && tgN==0) // ===> p+p=p+p
645  {
646  G4double E1=lastTM*theB1;
647  G4double R1=(1.-std::exp(-E1));
648  G4double E2=lastTM*theB2;
649  G4double R2=(1.-std::exp(-E2*E2*E2));
650  G4double E3=lastTM*theB3;
651  G4double R3=(1.-std::exp(-E3));
652  G4double I1=R1*theS1/theB1;
653  G4double I2=R2*theS2;
654  G4double I3=R3*theS3;
655  G4double I12=I1+I2;
656  G4double rand=(I12+I3)*G4UniformRand();
657  if (rand<I1 )
658  {
659  G4double ran=R1*G4UniformRand();
660  if(ran>1.) ran=1.;
661  q2=-std::log(1.-ran)/theB1;
662  }
663  else if(rand<I12)
664  {
665  G4double ran=R2*G4UniformRand();
666  if(ran>1.) ran=1.;
667  q2=-std::log(1.-ran);
668  if(q2<0.) q2=0.;
669  q2=std::pow(q2,third)/theB2;
670  }
671  else
672  {
673  G4double ran=R3*G4UniformRand();
674  if(ran>1.) ran=1.;
675  q2=-std::log(1.-ran)/theB3;
676  }
677  }
678  else
679  {
680  G4double a=tgZ+tgN;
681  G4double E1=lastTM*(theB1+lastTM*theSS);
682  G4double R1=(1.-std::exp(-E1));
683  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
684  G4double tm2=lastTM*lastTM;
685  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
686  if(a>6.5)E2*=tm2; // for heavy nuclei
687  G4double R2=(1.-std::exp(-E2));
688  G4double E3=lastTM*theB3;
689  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
690  G4double R3=(1.-std::exp(-E3));
691  G4double E4=lastTM*theB4;
692  G4double R4=(1.-std::exp(-E4));
693  G4double I1=R1*theS1;
694  G4double I2=R2*theS2;
695  G4double I3=R3*theS3;
696  G4double I4=R4*theS4;
697  G4double I12=I1+I2;
698  G4double I13=I12+I3;
699  G4double rand=(I13+I4)*G4UniformRand();
700  if(rand<I1)
701  {
702  G4double ran=R1*G4UniformRand();
703  if(ran>1.) ran=1.;
704  q2=-std::log(1.-ran)/theB1;
705  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
706  }
707  else if(rand<I12)
708  {
709  G4double ran=R2*G4UniformRand();
710  if(ran>1.) ran=1.;
711  q2=-std::log(1.-ran)/theB2;
712  if(q2<0.) q2=0.;
713  if(a<6.5) q2=std::pow(q2,third);
714  else q2=std::pow(q2,fifth);
715  }
716  else if(rand<I13)
717  {
718  G4double ran=R3*G4UniformRand();
719  if(ran>1.) ran=1.;
720  q2=-std::log(1.-ran)/theB3;
721  if(q2<0.) q2=0.;
722  if(a>6.5) q2=std::pow(q2,sevth);
723  }
724  else
725  {
726  G4double ran=R4*G4UniformRand();
727  if(ran>1.) ran=1.;
728  q2=-std::log(1.-ran)/theB4;
729  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
730  }
731  }
732  if(q2<0.) q2=0.;
733  if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QHyElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
734  if(q2>lastTM)
735  {
736  q2=lastTM;
737  }
738  return q2*GeVSQ;
739 }
740 
741 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
742 G4double G4ChipsHyperonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
743 {
744  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
745  if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetSlope: onlCS=true"<<G4endl;
746  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
747  if(PDG==3222 || PDG<3000 || PDG>3334)
748  {
749  // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
750  // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
751  // throw G4QException("G4ChipsHyperonElasticXS::GetSlope: HypA are implemented");
753  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
754  << ", while it is defined only for Hyperons" << G4endl;
755  G4Exception("G4ChipsHyperonElasticXS::GetSlope()", "HAD_CHPS_0000",
756  FatalException, ed);
757  }
758  if(theB1<0.) theB1=0.;
759  if(!(theB1>=-1.||theB1<=1.)) G4cout<<"*NAN*G4QHyElasticCrossS::Getslope:"<<theB1<<G4endl;
760  return theB1/GeVSQ;
761 }
762 
763 // Returns half max(Q2=-t) in independent units (MeV^2)
764 G4double G4ChipsHyperonElasticXS::GetHMaxT()
765 {
766  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
767  return lastTM*HGeVSQ;
768 }
769 
770 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
771 G4double G4ChipsHyperonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
772  G4int tgN)
773 {
774  if(PDG==3222 || PDG<3000 || PDG>3334) G4cout<<"*Warning*G4QHypElCS::GTV:P="<<PDG<<G4endl;
775  if(tgZ<0 || tgZ>92)
776  {
777  G4cout<<"*Warning*G4QHyperonElastCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
778  return 0.;
779  }
780  G4int iZ=tgZ-1; // Z index
781  if(iZ<0)
782  {
783  iZ=0; // conversion of the neutron target to the proton target
784  tgZ=1;
785  tgN=0;
786  }
787  G4double p=std::exp(lp); // momentum
788  G4double sp=std::sqrt(p); // sqrt(p)
789  G4double p2=p*p;
790  G4double p3=p2*p;
791  G4double p4=p3*p;
792  if ( tgZ == 1 && tgN == 0 ) // Hyperon+P
793  {
794  G4double dl2=lp-lastPAR[9];
795  theSS=lastPAR[32];
796  theS1=(lastPAR[10]+lastPAR[11]*dl2*dl2)/(1.+lastPAR[12]/p4/p)+
797  (lastPAR[13]/p2+lastPAR[14]*p)/(p4+lastPAR[15]*sp);
798  theB1=lastPAR[16]*std::pow(p,lastPAR[17])/(1.+lastPAR[18]/p3);
799  theS2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]*p);
800  theB2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]/sp);
801  theS3=lastPAR[25]+lastPAR[26]/(p4*p4+lastPAR[27]*p2+lastPAR[28]);
802  theB3=lastPAR[29]+lastPAR[30]/(p4+lastPAR[31]);
803  theS4=0.;
804  theB4=0.;
805  // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
806  G4double dp=lp-lastPAR[4];
807  return lastPAR[0]/(lastPAR[1]+p2*(lastPAR[2]+p2))+(lastPAR[3]*dp*dp+lastPAR[5]+
808  lastPAR[6]/p2)/(1.+lastPAR[7]/sp+lastPAR[8]/p4);
809  }
810  else
811  {
812  G4double p5=p4*p;
813  G4double p6=p5*p;
814  G4double p8=p6*p2;
815  G4double p10=p8*p2;
816  G4double p12=p10*p2;
817  G4double p16=p8*p8;
818  //G4double p24=p16*p8;
819  G4double dl=lp-5.;
820  G4double a=tgZ+tgN;
821  G4double pah=std::pow(p,a/2);
822  G4double pa=pah*pah;
823  G4double pa2=pa*pa;
824  if(a<6.5)
825  {
826  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
827  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
828  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
829  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
830  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
831  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
832  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
833  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
834  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
835  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
836  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
837  }
838  else
839  {
840  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
841  lastPAR[13]/(p5+lastPAR[14]/p16);
842  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
843  lastPAR[17]/(1.+lastPAR[18]/p4);
844  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
845  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
846  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
847  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
848  lastPAR[33]/(1.+lastPAR[34]/p6);
849  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
850  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
851  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
852  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
853  }
854  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
855  G4double dlp=lp-lastPAR[5]; // ax
856  // p1 p2 p3 p4 p5
857  return (lastPAR[0]*dlp*dlp+lastPAR[1])/(1.+lastPAR[2]/p)+lastPAR[3]/(p3+lastPAR[4]);
858  }
859  return 0.;
860 } // End of GetTableValues
861 
862 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
863 G4double G4ChipsHyperonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
864  G4double pP)
865 {
866  static const G4double mLamb= G4Lambda::Lambda()->GetPDGMass()*.001; // MeV to GeV
867  static const G4double mLa2= mLamb*mLamb;
868  G4double pP2=pP*pP; // squared momentum of the projectile
869  if(tgZ || tgN>-1) // --> Hyperon-A
870  {
871  G4double mt=G4ParticleTable::GetParticleTable()->FindIon(tgZ,tgZ+tgN,0,tgZ)->GetPDGMass()*.001; // Target mass in GeV
872 
873  G4double dmt=mt+mt;
874  G4double mds=dmt*std::sqrt(pP2+mLa2)+mLa2+mt*mt; // Mondelstam mds (@@ other hyperons?)
875  return dmt*dmt*pP2/mds;
876  }
877  else
878  {
879  // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
880  // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
881  // throw G4QException("G4ChipsHyperonElasticXS::GetQ2max: only HyperA implemented");
883  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
884  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
885  G4Exception("G4ChipsHyperonElasticXS::GetQ2max()", "HAD_CHPS_0000",
886  FatalException, ed);
887  return 0;
888  }
889 }