Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ChipsAntiBaryonElasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 //
30 // G4 Physics class: G4ChipsAntiBaryonElasticXS for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
33 //
34 //
35 // -------------------------------------------------------------------------------
36 // Short description: Interaction cross-sections for the elastic process.
37 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
38 // -------------------------------------------------------------------------------
39 
40 
42 #include "G4SystemOfUnits.hh"
43 #include "G4DynamicParticle.hh"
44 #include "G4ParticleDefinition.hh"
45 #include "G4AntiProton.hh"
46 #include "G4Nucleus.hh"
47 #include "G4ParticleTable.hh"
48 #include "G4NucleiProperties.hh"
49 
50 // factory
51 #include "G4CrossSectionFactory.hh"
52 //
54 
55 G4ChipsAntiBaryonElasticXS::G4ChipsAntiBaryonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
56 {
57  lPMin=-8.; //Min tabulatedLogarithmMomentum(D)
58  lPMax= 8.; //Max tabulatedLogarithmMomentum(D)
59  dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
60  onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
61  lastSIG=0.; //Last calculated cross section (L)
62  lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
63  lastTM=0.; //Last t_maximum (L)
64  theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
65  theS1=0.; //TheLastMantissa of 1st difrMax(L)
66  theB1=0.; //TheLastSlope of 1st difructMax(L)
67  theS2=0.; //TheLastMantissa of 2nd difrMax(L)
68  theB2=0.; //TheLastSlope of 2nd difructMax(L)
69  theS3=0.; //TheLastMantissa of 3d difr.Max(L)
70  theB3=0.; //TheLastSlope of 3d difruct.Max(L)
71  theS4=0.; //TheLastMantissa of 4th difrMax(L)
72  theB4=0.; //TheLastSlope of 4th difructMax(L)
73  lastTZ=0; // Last atomic number of the target
74  lastTN=0; // Last # of neutrons in the target
75  lastPIN=0.; // Last initialized max momentum
76  lastCST=0; // Elastic cross-section table
77  lastPAR=0; // ParametersForFunctionCalculation
78  lastSST=0; // E-dep ofSqardSlope of 1st difMax
79  lastS1T=0; // E-dep of mantissa of 1st dif.Max
80  lastB1T=0; // E-dep of the slope of 1st difMax
81  lastS2T=0; // E-dep of mantissa of 2nd difrMax
82  lastB2T=0; // E-dep of the slope of 2nd difMax
83  lastS3T=0; // E-dep of mantissa of 3d difr.Max
84  lastB3T=0; // E-dep of the slope of 3d difrMax
85  lastS4T=0; // E-dep of mantissa of 4th difrMax
86  lastB4T=0; // E-dep of the slope of 4th difMax
87  lastN=0; // The last N of calculated nucleus
88  lastZ=0; // The last Z of calculated nucleus
89  lastP=0.; // LastUsed inCrossSection Momentum
90  lastTH=0.; // Last threshold momentum
91  lastCS=0.; // Last value of the Cross Section
92  lastI=0; // The last position in the DAMDB
93 }
94 
96 {
97  std::vector<G4double*>::iterator pos;
98  for (pos=CST.begin(); pos<CST.end(); pos++)
99  { delete [] *pos; }
100  CST.clear();
101  for (pos=PAR.begin(); pos<PAR.end(); pos++)
102  { delete [] *pos; }
103  PAR.clear();
104  for (pos=SST.begin(); pos<SST.end(); pos++)
105  { delete [] *pos; }
106  SST.clear();
107  for (pos=S1T.begin(); pos<S1T.end(); pos++)
108  { delete [] *pos; }
109  S1T.clear();
110  for (pos=B1T.begin(); pos<B1T.end(); pos++)
111  { delete [] *pos; }
112  B1T.clear();
113  for (pos=S2T.begin(); pos<S2T.end(); pos++)
114  { delete [] *pos; }
115  S2T.clear();
116  for (pos=B2T.begin(); pos<B2T.end(); pos++)
117  { delete [] *pos; }
118  B2T.clear();
119  for (pos=S3T.begin(); pos<S3T.end(); pos++)
120  { delete [] *pos; }
121  S3T.clear();
122  for (pos=B3T.begin(); pos<B3T.end(); pos++)
123  { delete [] *pos; }
124  B3T.clear();
125  for (pos=S4T.begin(); pos<S4T.end(); pos++)
126  { delete [] *pos; }
127  S4T.clear();
128  for (pos=B4T.begin(); pos<B4T.end(); pos++)
129  { delete [] *pos; }
130  B4T.clear();
131 }
132 
133 
135  const G4Element*,
136  const G4Material*)
137 {
138  G4ParticleDefinition* particle = Pt->GetDefinition();
139 
140  if(particle == G4AntiNeutron::AntiNeutron())
141  {
142  return true;
143  }
144  else if(particle == G4AntiProton::AntiProton())
145  {
146  return true;
147  }
148  else if(particle == G4AntiLambda::AntiLambda())
149  {
150  return true;
151  }
152  else if(particle == G4AntiSigmaPlus::AntiSigmaPlus())
153  {
154  return true;
155  }
156  else if(particle == G4AntiSigmaMinus::AntiSigmaMinus())
157  {
158  return true;
159  }
160  else if(particle == G4AntiSigmaZero::AntiSigmaZero())
161  {
162  return true;
163  }
164  else if(particle == G4AntiXiMinus::AntiXiMinus())
165  {
166  return true;
167  }
168  else if(particle == G4AntiXiZero::AntiXiZero())
169  {
170  return true;
171  }
172  else if(particle == G4AntiOmegaMinus::AntiOmegaMinus())
173  {
174  return true;
175  }
176  return false;
177 }
178 
179 // The main member function giving the collision cross section (P is in IU, CS is in mb)
180 // Make pMom in independent units ! (Now it is MeV)
182  const G4Isotope*,
183  const G4Element*,
184  const G4Material*)
185 {
186  G4double pMom=Pt->GetTotalMomentum();
187  G4int tgN = A - tgZ;
188  G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
189 
190  return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
191 }
192 
194 {
195  static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
196  static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
197  static std::vector <G4double> colP; // Vector of last momenta for the reaction
198  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
199  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
200  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
201 
202  G4bool fCS = false;
203 
204  G4double pEn=pMom;
205  onlyCS=fCS;
206 
207  G4bool in=false; // By default the isotope must be found in the AMDB
208  lastP = 0.; // New momentum history (nothing to compare with)
209  lastN = tgN; // The last N of the calculated nucleus
210  lastZ = tgZ; // The last Z of the calculated nucleus
211  lastI = colN.size(); // Size of the Associative Memory DB in the heap
212  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
213  { // The nucleus with projPDG is found in AMDB
214  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
215  {
216  lastI=i;
217  lastTH =colTH[i]; // Last THreshold (A-dependent)
218  if(pEn<=lastTH)
219  {
220  return 0.; // Energy is below the Threshold value
221  }
222  lastP =colP [i]; // Last Momentum (A-dependent)
223  lastCS =colCS[i]; // Last CrossSect (A-dependent)
224  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
225  if(lastP == pMom) // Do not recalculate
226  {
227  CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
228  return lastCS*millibarn; // Use theLastCS
229  }
230  in = true; // This is the case when the isotop is found in DB
231  // Momentum pMom is in IU ! @@ Units
232  lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
233  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
234  {
235  lastTH=pEn;
236  }
237  break; // Go out of the LOOP with found lastI
238  }
239  } // End of attampt to find the nucleus in DB
240  if(!in) // This nucleus has not been calculated previously
241  {
243  lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
244  if(lastCS<=0.)
245  {
246  lastTH = 0; // ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
247  if(pEn>lastTH)
248  {
249  lastTH=pEn;
250  }
251  }
252  colN.push_back(tgN);
253  colZ.push_back(tgZ);
254  colP.push_back(pMom);
255  colTH.push_back(lastTH);
256  colCS.push_back(lastCS);
257  return lastCS*millibarn;
258  } // End of creation of the new set of parameters
259  else
260  {
261  colP[lastI]=pMom;
262  colCS[lastI]=lastCS;
263  }
264  return lastCS*millibarn;
265 }
266 
267 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
268 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
269 G4double G4ChipsAntiBaryonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
270  G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
271 {
272  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
273  static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
274  // *** End of Static Definitions (Associative Memory Data Base) ***
275  G4double pMom=pIU/GeV; // All calculations are in GeV
276  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
277  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
278  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
279  {
280  if(F<0) // the AMDB must be loded
281  {
282  lastPIN = PIN[I]; // Max log(P) initialised for this table set
283  lastPAR = PAR[I]; // Pointer to the parameter set
284  lastCST = CST[I]; // Pointer to the total sross-section table
285  lastSST = SST[I]; // Pointer to the first squared slope
286  lastS1T = S1T[I]; // Pointer to the first mantissa
287  lastB1T = B1T[I]; // Pointer to the first slope
288  lastS2T = S2T[I]; // Pointer to the second mantissa
289  lastB2T = B2T[I]; // Pointer to the second slope
290  lastS3T = S3T[I]; // Pointer to the third mantissa
291  lastB3T = B3T[I]; // Pointer to the rhird slope
292  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
293  lastB4T = B4T[I]; // Pointer to the 4-th slope
294  }
295  if(lastLP>lastPIN && lastLP<lPMax)
296  {
297  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
298  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
299  }
300  }
301  else // This isotope wasn't initialized => CREATE
302  {
303  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
304  lastPAR[nLast]=0; // Initialization for VALGRIND
305  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
306  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
307  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
308  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
309  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
310  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
311  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
312  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
313  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
314  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
315  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
316  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
317  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
318  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
319  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
320  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
321  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
322  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
323  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
324  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
325  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
326  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
327  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
328  } // End of creation/update of the new set of parameters and tables
329  // =---------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
330  if(lastLP>lastPIN && lastLP<lPMax)
331  {
332  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
333  }
334  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
335  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
336  {
337  if(lastLP==lastPIN)
338  {
339  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
340  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
341  if(blast<0 || blast>=nLast) G4cout<<"G4QaBarElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
342  lastSIG = lastCST[blast];
343  if(!onlyCS) // Skip the differential cross-section parameters
344  {
345  theSS = lastSST[blast];
346  theS1 = lastS1T[blast];
347  theB1 = lastB1T[blast];
348  theS2 = lastS2T[blast];
349  theB2 = lastB2T[blast];
350  theS3 = lastS3T[blast];
351  theB3 = lastB3T[blast];
352  theS4 = lastS4T[blast];
353  theB4 = lastB4T[blast];
354  }
355  }
356  else
357  {
358  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
359  G4int blast=static_cast<int>(shift); // the lower bin number
360  if(blast<0) blast=0;
361  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
362  shift-=blast; // step inside the unit bin
363  G4int lastL=blast+1; // the upper bin number
364  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
365  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
366  if(!onlyCS) // Skip the differential cross-section parameters
367  {
368  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
369  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
370  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
371  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
372  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
373  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
374  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
375  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
376  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
377  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
378  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
379  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
380  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
381  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
382  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
383  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
384  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
385  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
386  }
387  }
388  }
389  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
390  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
391  return lastSIG;
392 }
393 
394 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
395 G4double G4ChipsAntiBaryonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
396  G4int tgZ, G4int tgN)
397 {
398  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
399  static const G4double pwd=2727;
400  const G4int n_appel=30; // #of parameters for app-elastic (<nPoints=128)
401  // -0- -1- -2- -3- -4- -5- -6- -7- -8--9--10--11--12--13--14-
402  G4double app_el[n_appel]={1.25,3.5,80.,1.,.0557,6.72,5.,74.,3.,3.4,.2,.17,.001,8.,.055,
403  3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,
404  1.e10,1.1,3.4e6,6.8e6,0.};
405  // -15- -16- -17- -18- -19- -20- -21- -22- -23- -24-
406  // -25- -26- -27- -28- -29-
407  if(PDG>-3334 && PDG<-1111)
408  {
409  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
410  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
411  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
412  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
413  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
414  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
415  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
416  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
417  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
418  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
419  //
420  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
421  {
422  if ( tgZ == 1 && tgN == 0 )
423  {
424  for (G4int ip=0; ip<n_appel; ip++) lastPAR[ip]=app_el[ip]; // PiMinus+P
425  }
426  else
427  {
428  G4double a=tgZ+tgN;
429  G4double sa=std::sqrt(a);
430  G4double ssa=std::sqrt(sa);
431  G4double asa=a*sa;
432  G4double a2=a*a;
433  G4double a3=a2*a;
434  G4double a4=a3*a;
435  G4double a5=a4*a;
436  G4double a6=a4*a2;
437  G4double a7=a6*a;
438  G4double a8=a7*a;
439  G4double a9=a8*a;
440  G4double a10=a5*a5;
441  G4double a12=a6*a6;
442  G4double a14=a7*a7;
443  G4double a16=a8*a8;
444  G4double a17=a16*a;
445  //G4double a20=a16*a4;
446  G4double a32=a16*a16;
447  // Reaction cross-section parameters (pel=peh_fit.f)
448  lastPAR[0]=.23*asa/(1.+a*.15); // p1
449  lastPAR[1]=2.8*asa/(1.+a*(.015+.05/ssa)); // p2
450  lastPAR[2]=15.*a/(1.+.005*a2); // p3
451  lastPAR[3]=.013*a2/(1.+a3*(.006+a*.00001)); // p4
452  lastPAR[4]=5.; // p5
453  lastPAR[5]=0.; // p6 not used
454  lastPAR[6]=0.; // p7 not used
455  lastPAR[7]=0.; // p8 not used
456  lastPAR[8]=0.; // p9 not used
457  // @@ the differential cross-section is parameterized separately for A>6 & A<7
458  if(a<6.5)
459  {
460  G4double a28=a16*a12;
461  // The main pre-exponent (pel_sg)
462  lastPAR[ 9]=4000*a; // p1
463  lastPAR[10]=1.2e7*a8+380*a17; // p2
464  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
465  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
466  lastPAR[13]=.28*a; // p5
467  lastPAR[14]=1.2*a2+2.3; // p6
468  lastPAR[15]=3.8/a; // p7
469  // The main slope (pel_sl)
470  lastPAR[16]=.01/(1.+.0024*a5); // p1
471  lastPAR[17]=.2*a; // p2
472  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
473  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
474  // The main quadratic (pel_sh)
475  lastPAR[20]=2.25*a3; // p1
476  lastPAR[21]=18.; // p2
477  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
478  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
479  // The 1st max pre-exponent (pel_qq)
480  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
481  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
482  lastPAR[26]=.0006*a3; // p3
483  // The 1st max slope (pel_qs)
484  lastPAR[27]=10.+4.e-8*a12*a; // p1
485  lastPAR[28]=.114; // p2
486  lastPAR[29]=.003; // p3
487  lastPAR[30]=2.e-23; // p4
488  // The effective pre-exponent (pel_ss)
489  lastPAR[31]=1./(1.+.0001*a8); // p1
490  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
491  lastPAR[33]=.03; // p3
492  // The effective slope (pel_sb)
493  lastPAR[34]=a/2; // p1
494  lastPAR[35]=2.e-7*a4; // p2
495  lastPAR[36]=4.; // p3
496  lastPAR[37]=64./a3; // p4
497  // The gloria pre-exponent (pel_us)
498  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
499  lastPAR[39]=20.*std::exp(.45*asa); // p2
500  lastPAR[40]=7.e3+2.4e6/a5; // p3
501  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
502  lastPAR[42]=2.5*a; // p5
503  // The gloria slope (pel_ub)
504  lastPAR[43]=920.+.03*a8*a3; // p1
505  lastPAR[44]=93.+.0023*a12; // p2
506  }
507  else // A > Li6 (li7, ...)
508  {
509  G4double p1a10=2.2e-28*a10;
510  G4double r4a16=6.e14/a16;
511  G4double s4a16=r4a16*r4a16;
512  // a24
513  // a36
514  // The main pre-exponent (peh_sg)
515  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
516  lastPAR[10]=.06*std::pow(a,.6); // p2
517  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
518  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
519  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
520  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
521  // The main slope (peh_sl)
522  lastPAR[15]=400./a12+2.e-22*a9; // p1
523  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
524  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
525  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
526  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
527  lastPAR[20]=9.+100./a; // p6
528  // The main quadratic (peh_sh)
529  lastPAR[21]=.002*a3+3.e7/a6; // p1
530  lastPAR[22]=7.e-15*a4*asa; // p2
531  lastPAR[23]=9000./a4; // p3
532  // The 1st max pre-exponent (peh_qq)
533  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
534  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
535  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
536  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
537  // The 1st max slope (peh_qs)
538  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
539  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
540  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
541  lastPAR[31]=100./asa; // p4
542  // The 2nd max pre-exponent (peh_ss)
543  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
544  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
545  lastPAR[34]=1.3+3.e5/a4; // p3
546  lastPAR[35]=500./(a2+50.)+3; // p4
547  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
548  // The 2nd max slope (peh_sb)
549  lastPAR[37]=.4*asa+3.e-9*a6; // p1
550  lastPAR[38]=.0005*a5; // p2
551  lastPAR[39]=.002*a5; // p3
552  lastPAR[40]=10.; // p4
553  // The effective pre-exponent (peh_us)
554  lastPAR[41]=.05+.005*a; // p1
555  lastPAR[42]=7.e-8/sa; // p2
556  lastPAR[43]=.8*sa; // p3
557  lastPAR[44]=.02*sa; // p4
558  lastPAR[45]=1.e8/a3; // p5
559  lastPAR[46]=3.e32/(a32+1.e32); // p6
560  // The effective slope (peh_ub)
561  lastPAR[47]=24.; // p1
562  lastPAR[48]=20./sa; // p2
563  lastPAR[49]=7.e3*a/(sa+1.); // p3
564  lastPAR[50]=900.*sa/(1.+500./a3); // p4
565  }
566  // Parameter for lowEnergyNeutrons
567  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
568  }
569  lastPAR[nLast]=pwd;
570  // and initialize the zero element of the table
571  G4double lp=lPMin; // ln(momentum)
572  G4bool memCS=onlyCS; // ??
573  onlyCS=false;
574  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
575  onlyCS=memCS;
576  lastSST[0]=theSS;
577  lastS1T[0]=theS1;
578  lastB1T[0]=theB1;
579  lastS2T[0]=theS2;
580  lastB2T[0]=theB2;
581  lastS3T[0]=theS3;
582  lastB3T[0]=theB3;
583  lastS4T[0]=theS4;
584  lastB4T[0]=theB4;
585  }
586  if(LP>ILP)
587  {
588  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
589  if(ini<0) ini=0;
590  if(ini<nPoints)
591  {
592  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
593  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
594  if(fin>=ini)
595  {
596  G4double lp=0.;
597  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
598  {
599  lp=lPMin+ip*dlnP; // ln(momentum)
600  G4bool memCS=onlyCS;
601  onlyCS=false;
602  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
603  onlyCS=memCS;
604  lastSST[ip]=theSS;
605  lastS1T[ip]=theS1;
606  lastB1T[ip]=theB1;
607  lastS2T[ip]=theS2;
608  lastB2T[ip]=theB2;
609  lastS3T[ip]=theS3;
610  lastB3T[ip]=theB3;
611  lastS4T[ip]=theS4;
612  lastB4T[ip]=theB4;
613  }
614  return lp;
615  }
616  else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG
617  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
618  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
619  }
620  else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG
621  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
622  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
623  }
624  }
625  else
626  {
627  // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
628  // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
629  // throw G4QException("G4ChipsAntiBaryonElasticXS::GetPTables:onlyaBA implemented");
631  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
632  << ", while it is defined only for Anti Baryons" << G4endl;
633  G4Exception("G4ChipsAntiBaryonElasticXS::GetPTables()", "HAD_CHPS_0000",
634  FatalException, ed);
635  }
636  return ILP;
637 }
638 
639 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
641 {
642  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
643  static const G4double third=1./3.;
644  static const G4double fifth=1./5.;
645  static const G4double sevth=1./7.;
646 
647  if(PDG<-3334 || PDG>-1111)G4cout<<"*Warning*G4QAntiBaryonElCS::GetExT:PDG="<<PDG<<G4endl;
648  if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetExchanT:onlyCS=1"<<G4endl;
649  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
650  G4double q2=0.;
651  if(tgZ==1 && tgN==0) // ===> p+p=p+p
652  {
653  G4double E1=lastTM*theB1;
654  G4double R1=(1.-std::exp(-E1));
655  G4double E2=lastTM*theB2;
656  G4double R2=(1.-std::exp(-E2*E2*E2));
657  G4double E3=lastTM*theB3;
658  G4double R3=(1.-std::exp(-E3));
659  G4double I1=R1*theS1/theB1;
660  G4double I2=R2*theS2;
661  G4double I3=R3*theS3;
662  G4double I12=I1+I2;
663  G4double rand=(I12+I3)*G4UniformRand();
664  if (rand<I1 )
665  {
666  G4double ran=R1*G4UniformRand();
667  if(ran>1.) ran=1.;
668  q2=-std::log(1.-ran)/theB1;
669  }
670  else if(rand<I12)
671  {
672  G4double ran=R2*G4UniformRand();
673  if(ran>1.) ran=1.;
674  q2=-std::log(1.-ran);
675  if(q2<0.) q2=0.;
676  q2=std::pow(q2,third)/theB2;
677  }
678  else
679  {
680  G4double ran=R3*G4UniformRand();
681  if(ran>1.) ran=1.;
682  q2=-std::log(1.-ran)/theB3;
683  }
684  }
685  else
686  {
687  G4double a=tgZ+tgN;
688  G4double E1=lastTM*(theB1+lastTM*theSS);
689  G4double R1=(1.-std::exp(-E1));
690  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
691  G4double tm2=lastTM*lastTM;
692  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
693  if(a>6.5)E2*=tm2; // for heavy nuclei
694  G4double R2=(1.-std::exp(-E2));
695  G4double E3=lastTM*theB3;
696  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
697  G4double R3=(1.-std::exp(-E3));
698  G4double E4=lastTM*theB4;
699  G4double R4=(1.-std::exp(-E4));
700  G4double I1=R1*theS1;
701  G4double I2=R2*theS2;
702  G4double I3=R3*theS3;
703  G4double I4=R4*theS4;
704  G4double I12=I1+I2;
705  G4double I13=I12+I3;
706  G4double rand=(I13+I4)*G4UniformRand();
707  if(rand<I1)
708  {
709  G4double ran=R1*G4UniformRand();
710  if(ran>1.) ran=1.;
711  q2=-std::log(1.-ran)/theB1;
712  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
713  }
714  else if(rand<I12)
715  {
716  G4double ran=R2*G4UniformRand();
717  if(ran>1.) ran=1.;
718  q2=-std::log(1.-ran)/theB2;
719  if(q2<0.) q2=0.;
720  if(a<6.5) q2=std::pow(q2,third);
721  else q2=std::pow(q2,fifth);
722  }
723  else if(rand<I13)
724  {
725  G4double ran=R3*G4UniformRand();
726  if(ran>1.) ran=1.;
727  q2=-std::log(1.-ran)/theB3;
728  if(q2<0.) q2=0.;
729  if(a>6.5) q2=std::pow(q2,sevth);
730  }
731  else
732  {
733  G4double ran=R4*G4UniformRand();
734  if(ran>1.) ran=1.;
735  q2=-std::log(1.-ran)/theB4;
736  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
737  }
738  }
739  if(q2<0.) q2=0.;
740  if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QaBElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
741  if(q2>lastTM)
742  {
743  q2=lastTM;
744  }
745  return q2*GeVSQ;
746 }
747 
748 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
749 G4double G4ChipsAntiBaryonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
750 {
751  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
752  if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetSlope:onlCS=true"<<G4endl;
753  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
754  if(PDG<-3334 || PDG>-1111)
755  {
756  // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
757  // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
758  // throw G4QException("G4ChipsAntiBaryonElasticXS::GetSlope: AnBa are implemented");
760  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
761  << ", while it is defined only for Anti Baryons" << G4endl;
762  G4Exception("G4ChipsAntiBaryonElasticXS::GetSlope()", "HAD_CHPS_0000",
763  FatalException, ed);
764  }
765  if(theB1<0.) theB1=0.;
766  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QaBaElasticCrossS::Getslope:"<<theB1<<G4endl;
767  return theB1/GeVSQ;
768 }
769 
770 // Returns half max(Q2=-t) in independent units (MeV^2)
771 G4double G4ChipsAntiBaryonElasticXS::GetHMaxT()
772 {
773  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
774  return lastTM*HGeVSQ;
775 }
776 
777 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
778 G4double G4ChipsAntiBaryonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
779  G4int tgN)
780 {
781  if(PDG<-3334 || PDG>-1111) G4cout<<"*Warning*G4QAntiBaryElCS::GetTabV:PDG="<<PDG<<G4endl;
782  if(tgZ<0 || tgZ>92)
783  {
784  G4cout<<"*Warning*G4QAntiBaryonElCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
785  return 0.;
786  }
787  G4int iZ=tgZ-1; // Z index
788  if(iZ<0)
789  {
790  iZ=0; // conversion of the neutron target to the proton target
791  tgZ=1;
792  tgN=0;
793  }
794  G4double p=std::exp(lp); // momentum
795  G4double sp=std::sqrt(p); // sqrt(p)
796  G4double p2=p*p;
797  G4double p3=p2*p;
798  G4double p4=p3*p;
799  if ( tgZ == 1 && tgN == 0 ) // PiMin+P
800  {
801  G4double dl2=lp-lastPAR[6]; // ld ?
802  theSS=lastPAR[29];
803  theS1=(lastPAR[7]+lastPAR[8]*dl2*dl2)/(1.+lastPAR[9]/p4/p)+
804  (lastPAR[10]/p2+lastPAR[11]*p)/(p4+lastPAR[12]*sp);
805  theB1=lastPAR[13]*std::pow(p,lastPAR[14])/(1.+lastPAR[15]/p3);
806  theS2=lastPAR[16]+lastPAR[17]/(p4+lastPAR[18]*p);
807  theB2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]/sp);
808  theS3=lastPAR[22]+lastPAR[23]/(p4*p4+lastPAR[24]*p2+lastPAR[25]);
809  theB3=lastPAR[26]+lastPAR[27]/(p4+lastPAR[28]);
810  theS4=0.;
811  theB4=0.;
812  // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
813  G4double ye=std::exp(lp*lastPAR[0]);
814  G4double dp=lp-lastPAR[1];
815  return lastPAR[2]/(ye+lastPAR[3])+lastPAR[4]*dp*dp+lastPAR[5];
816  }
817  else
818  {
819  G4double p5=p4*p;
820  G4double p6=p5*p;
821  G4double p8=p6*p2;
822  G4double p10=p8*p2;
823  G4double p12=p10*p2;
824  G4double p16=p8*p8;
825  //G4double p24=p16*p8;
826  G4double dl=lp-5.;
827  G4double a=tgZ+tgN;
828  G4double pah=std::pow(p,a/2);
829  G4double pa=pah*pah;
830  G4double pa2=pa*pa;
831  if(a<6.5)
832  {
833  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
834  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
835  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
836  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
837  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
838  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
839  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
840  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
841  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
842  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
843  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
844  }
845  else
846  {
847  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
848  lastPAR[13]/(p5+lastPAR[14]/p16);
849  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
850  lastPAR[17]/(1.+lastPAR[18]/p4);
851  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
852  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
853  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
854  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
855  lastPAR[33]/(1.+lastPAR[34]/p6);
856  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
857  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
858  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
859  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
860  }
861  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
862  G4double dlp=lp-lastPAR[4]; // ax
863  // p1 p2 p3 p4
864  return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p)/(1.+lastPAR[3]/p);
865  }
866  return 0.;
867 } // End of GetTableValues
868 
869 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
870 G4double G4ChipsAntiBaryonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
871  G4double pP)
872 {
873  static const G4double mNeut= G4Neutron::Neutron()->GetPDGMass()*.001; // MeV to GeV
874  static const G4double mProt= G4Proton::Proton()->GetPDGMass()*.001; // MeV to GeV
875  static const G4double mNuc2= sqr((mProt+mNeut)/2);
876  G4double pP2=pP*pP; // squared momentum of the projectile
877  if(tgZ || tgN>-1) // ---> pipA
878  {
879  G4double mt=G4ParticleTable::GetParticleTable()->FindIon(tgZ,tgZ+tgN,0,tgZ)->GetPDGMass()*.001; // Target mass in GeV
880  G4double dmt=mt+mt;
881  G4double mds=dmt*std::sqrt(pP2+mNuc2)+mNuc2+mt*mt; // Mondelstam mds (@@ other AntiBar?)
882  return dmt*dmt*pP2/mds;
883  }
884  else
885  {
886  // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
887  // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
888  // throw G4QException("G4ChipsAntiBaryonElasticXS::GetQ2max: only aBA implemented");
890  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
891  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
892  G4Exception("G4ChipsAntiBaryonElasticXS::GetQ2max()", "HAD_CHPS_0000",
893  FatalException, ed);
894  return 0;
895  }
896 }