Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
global
HEPNumerics
include
G4ChebyshevApproximation.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id$
28
//
29
// Class description:
30
//
31
// Class creating the Chebyshev approximation for a function pointed by fFunction
32
// data member. The Chebyshev polinom approximation provides an efficient evaluation
33
// of minimax polynomial, which (among all polynomials of the same degree) has the
34
// smallest maximum deviation from the true function.
35
// The methods based mainly on recommendations given in the book : An introduction to
36
// NUMERICAL METHODS IN C++, B.H. Flowers, Claredon Press, Oxford, 1995
37
//
38
// ------------------------- MEMBER DATA ------------------------------------
39
//
40
// function fFunction - pointer to a function considered
41
// G4int fNumber - number of Chebyshev coefficients
42
// G4double* fChebyshevCof - array of Chebyshev coefficients
43
// G4double fMean = (a+b)/2 - mean point of interval
44
// G4double fDiff = (b-a)/2 - half of the interval value
45
//
46
// ------------------------ CONSTRUCTORS ----------------------------------
47
//
48
// Constructor for initialisation of the class data members. It creates the array
49
// fChebyshevCof[0,...,fNumber-1], fNumber = n ; which consists of Chebyshev
50
// coefficients describing the function pointed by pFunction. The values a and b
51
// fixe the interval of validity of Chebyshev approximation.
52
//
53
// G4ChebyshevApproximation( function pFunction,
54
// G4int n,
55
// G4double a,
56
// G4double b )
57
//
58
// --------------------------------------------------------------------
59
//
60
// Constructor for creation of Chebyshev coefficients for m-derivative
61
// from pFunction. The value of m ! MUST BE ! < n , because the result
62
// array of fChebyshevCof will be of (n-m) size. There is a definite dependence
63
// between the proper selection of n, m, a and b values to get better accuracy
64
// of the derivative value.
65
//
66
// G4ChebyshevApproximation( function pFunction,
67
// G4int n,
68
// G4int m,
69
// G4double a,
70
// G4double b )
71
//
72
// ------------------------------------------------------
73
//
74
// Constructor for creation of Chebyshev coefficients for integral
75
// from pFunction.
76
//
77
// G4ChebyshevApproximation( function pFunction,
78
// G4double a,
79
// G4double b,
80
// G4int n )
81
//
82
// ---------------------------------------------------------------
83
//
84
// Destructor deletes the array of Chebyshev coefficients
85
//
86
// ~G4ChebyshevApproximation()
87
//
88
// ----------------------------- METHODS ----------------------------------
89
//
90
// Access function for Chebyshev coefficients
91
//
92
// G4double GetChebyshevCof(G4int number) const
93
//
94
// --------------------------------------------------------------
95
//
96
// Evaluate the value of fFunction at the point x via the Chebyshev coefficients
97
// fChebyshevCof[0,...,fNumber-1]
98
//
99
// G4double ChebyshevEvaluation(G4double x) const
100
//
101
// ------------------------------------------------------------------
102
//
103
// Returns the array derCof[0,...,fNumber-2], the Chebyshev coefficients of the
104
// derivative of the function whose coefficients are fChebyshevCof
105
//
106
// void DerivativeChebyshevCof(G4double derCof[]) const
107
//
108
// ------------------------------------------------------------------------
109
//
110
// This function produces the array integralCof[0,...,fNumber-1] , the Chebyshev
111
// coefficients of the integral of the function whose coefficients are
112
// fChebyshevCof. The constant of integration is set so that the integral vanishes
113
// at the point (fMean - fDiff)
114
//
115
// void IntegralChebyshevCof(G4double integralCof[]) const
116
117
// --------------------------- HISTORY --------------------------------------
118
//
119
// 24.04.97 V.Grichine ( Vladimir.Grichine@cern.ch )
120
121
#ifndef G4CHEBYSHEVAPPROXIMATION_HH
122
#define G4CHEBYSHEVAPPROXIMATION_HH
123
124
#include "
globals.hh
"
125
126
typedef
G4double
(*
function
)(
G4double
) ;
127
128
class
G4ChebyshevApproximation
129
{
130
public
:
// with description
131
132
G4ChebyshevApproximation
(
function
pFunction,
133
G4int
n
,
134
G4double
a
,
135
G4double
b
) ;
136
//
137
// Constructor for creation of Chebyshev coefficients for m-derivative
138
// from pFunction. The value of m ! MUST BE ! < n , because the result
139
// array of fChebyshevCof will be of (n-m) size.
140
141
G4ChebyshevApproximation
(
function
pFunction,
142
G4int
n,
143
G4int
m
,
144
G4double
a,
145
G4double
b ) ;
146
//
147
// Constructor for creation of Chebyshev coefficients for integral
148
// from pFunction.
149
150
G4ChebyshevApproximation
(
function
pFunction,
151
G4double
a,
152
G4double
b,
153
G4int
n ) ;
154
155
~G4ChebyshevApproximation
() ;
156
157
// Access functions
158
159
G4double
GetChebyshevCof
(
G4int
number)
const
;
160
161
// Methods
162
163
G4double
ChebyshevEvaluation
(
G4double
x
)
const
;
164
void
DerivativeChebyshevCof
(
G4double
derCof[])
const
;
165
void
IntegralChebyshevCof
(
G4double
integralCof[])
const
;
166
167
private
:
168
169
G4ChebyshevApproximation
(
const
G4ChebyshevApproximation
&);
170
G4ChebyshevApproximation
& operator=(
const
G4ChebyshevApproximation
&);
171
172
private
:
173
174
function
fFunction ;
175
G4int
fNumber ;
176
G4double
* fChebyshevCof ;
177
G4double
fMean ;
178
G4double
fDiff ;
179
};
180
181
#endif
Generated on Sat May 25 2013 14:33:17 for Geant4 by
1.8.4