Geant4  10.02
G4MagHelicalStepper.icc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4MagHelicalStepper.icc 66356 2012-12-18 09:02:32Z gcosmo $
28 //
29 // Linear Step in regions of no field
30 //
31 // --------------------------------------------------------------------
32 
33 inline void
34 G4MagHelicalStepper::LinearStep( const G4double yIn[],
35  G4double h,
36  G4double yLinear[]) const
37 {
38  G4double momentum_val = std::sqrt(yIn[3]*yIn[3] + yIn[4]*yIn[4] + yIn[5]*yIn[5]) ;
39  G4double inv_momentum = 1.0 / momentum_val ;
40  G4double yDir[3];
41  // G4double h_div_momentum = 1.0 / momentum_val ;
42 
43  for( G4int i = 0; i < 3; i++ ) {
44  yDir[i] = inv_momentum * yIn[i+3];
45  yLinear[i] = yIn[i] + h * yDir[i];
46  // yLinear[i] = yIn[i] + h_div_momentum * yIn[i+3];
47  yLinear[i+3] = yIn[i+3];
48  }
49 }
50 
51 inline void
52 G4MagHelicalStepper::MagFieldEvaluate(const G4double y[],
53  G4ThreeVector& Bfield )
54 {
55  G4double B[3];
56  GetEquationOfMotion()-> GetFieldValue(y, B);
57  Bfield= G4ThreeVector( B[0], B[1], B[2] );
58 }
59 
60 inline G4double
61 G4MagHelicalStepper::GetInverseCurve(const G4double Momentum,
62  const G4double Bmag)
63 {
64 
65  G4double inv_momentum = 1.0 / Momentum ;
66  G4double particleCharge = fPtrMagEqOfMot->FCof() / (CLHEP::eplus*CLHEP::c_light);
67  G4double fCoefficient = -fUnitConstant * particleCharge*inv_momentum;
68 
69  return fCoefficient*Bmag;
70 }
71 inline void G4MagHelicalStepper:: SetAngCurve(const G4double Ang)
72 {
73 fAngCurve=Ang;
74 
75 }
76 
77 inline G4double G4MagHelicalStepper:: GetAngCurve() const
78 {
79 return fAngCurve;
80 
81 }
82 
83 inline void G4MagHelicalStepper:: SetCurve(const G4double Curve)
84 {
85  frCurve=Curve;
86 }
87 
88 inline G4double G4MagHelicalStepper:: GetCurve() const
89 {
90 return frCurve;
91 
92 }
93 
94 inline void G4MagHelicalStepper:: SetRadHelix(const G4double Rad)
95 {
96  frHelix=Rad;
97 }
98 
99 inline G4double G4MagHelicalStepper:: GetRadHelix() const
100 {
101 return frHelix;
102 
103 }
104 
105 
106 
107