2 // ********************************************************************
 
    3 // * License and Disclaimer                                           *
 
    5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
 
    6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
 
    7 // * conditions of the Geant4 Software License,  included in the file *
 
    8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
 
    9 // * include a list of copyright holders.                             *
 
   11 // * Neither the authors of this software system, nor their employing *
 
   12 // * institutes,nor the agencies providing financial support for this *
 
   13 // * work  make  any representation or  warranty, express or implied, *
 
   14 // * regarding  this  software system or assume any liability for its *
 
   15 // * use.  Please see the license in the file  LICENSE  and URL above *
 
   16 // * for the full disclaimer and the limitation of liability.         *
 
   18 // * This  code  implementation is the result of  the  scientific and *
 
   19 // * technical work of the GEANT4 collaboration.                      *
 
   20 // * By using,  copying,  modifying or  distributing the software (or *
 
   21 // * any work based  on the software)  you  agree  to acknowledge its *
 
   22 // * use  in  resulting  scientific  publications,  and indicate your *
 
   23 // * acceptance of all terms of the Geant4 Software license.          *
 
   24 // ********************************************************************
 
   27 // $Id: G4PolynomialSolver.icc 67970 2013-03-13 10:10:06Z gcosmo $
 
   29 // class G4PolynomialSolver
 
   31 // 19.12.00 E.Medernach, First implementation
 
   34 #define POLEPSILON   1e-12
 
   35 #define POLINFINITY  9.0E99
 
   36 #define ITERATION  12 // 20 But 8 is really enough for Newton with a good guess
 
   38 template <class T, class F>
 
   39 G4PolynomialSolver<T,F>::G4PolynomialSolver (T* typeF, F func, F deriv,
 
   42   Precision = precision ;
 
   43   FunctionClass = typeF ;
 
   48 template <class T, class F>
 
   49 G4PolynomialSolver<T,F>::~G4PolynomialSolver ()
 
   53 template <class T, class F>
 
   54 G4double G4PolynomialSolver<T,F>::solve(G4double IntervalMin,
 
   57   return Newton(IntervalMin,IntervalMax);  
 
   61 /* If we want to be general this could work for any
 
   62    polynomial of order more that 4 if we find the (ORDER + 1)
 
   67 template <class T, class F>
 
   69 G4PolynomialSolver<T,F>::BezierClipping(/*T* typeF,F func,F deriv,*/
 
   70                                    G4double *IntervalMin,
 
   71                                    G4double *IntervalMax)
 
   73   /** BezierClipping is a clipping interval Newton method **/
 
   74   /** It works by clipping the area where the polynomial is **/
 
   76   G4double P[NBBEZIER][2],D[2];
 
   77   G4double NewMin,NewMax;
 
   79   G4int IntervalIsVoid = 1;
 
   81   /*** Calculating Control Points  ***/
 
   82   /* We see the polynomial as a Bezier curve for some control points to find */
 
   85     For 5 control points (polynomial of degree 4) this is:
 
   87     0     p0 = F((*IntervalMin))
 
   88     1/4   p1 = F((*IntervalMin)) + ((*IntervalMax) - (*IntervalMin))/4
 
   90     2/4   p2 = 1/6 * (16*F(((*IntervalMax) + (*IntervalMin))/2)
 
   91                       - (p0 + 4*p1 + 4*p3 + p4))  
 
   92     3/4   p3 = F((*IntervalMax)) - ((*IntervalMax) - (*IntervalMin))/4
 
   94     1     p4 = F((*IntervalMax))
 
   97   /* x,y,z,dx,dy,dz are constant during searching */
 
   99   D[0] = (FunctionClass->*Derivative)(*IntervalMin);
 
  101   P[0][0] = (*IntervalMin);
 
  102   P[0][1] = (FunctionClass->*Function)(*IntervalMin);
 
  105   if (std::fabs(P[0][1]) < Precision) {
 
  109   if (((*IntervalMax) - (*IntervalMin)) < POLEPSILON) {
 
  113   P[1][0] = (*IntervalMin) + ((*IntervalMax) - (*IntervalMin))/4;
 
  114   P[1][1] = P[0][1] + (((*IntervalMax) - (*IntervalMin))/4.0) * D[0];
 
  116   D[1] = (FunctionClass->*Derivative)(*IntervalMax);
 
  118   P[4][0] = (*IntervalMax);
 
  119   P[4][1] = (FunctionClass->*Function)(*IntervalMax);
 
  121   P[3][0] = (*IntervalMax) - ((*IntervalMax) - (*IntervalMin))/4;
 
  122   P[3][1] = P[4][1] - ((*IntervalMax) - (*IntervalMin))/4 * D[1];
 
  124   P[2][0] = ((*IntervalMax) + (*IntervalMin))/2;
 
  125   P[2][1] = (16*(FunctionClass->*Function)(((*IntervalMax)+(*IntervalMin))/2)
 
  126              - (P[0][1] + 4*P[1][1] + 4*P[3][1] + P[4][1]))/6 ;
 
  129     G4double Intersection ;
 
  132     NewMin = (*IntervalMax) ;
 
  133     NewMax = (*IntervalMin) ;    
 
  138      /* there is an intersection only if each have different signs */
 
  139      if (((P[j][1] > -Precision) && (P[i][1] < Precision)) ||
 
  140          ((P[j][1] < Precision) && (P[i][1] > -Precision))) {
 
  142        Intersection = P[j][0] - P[j][1]*((P[i][0] - P[j][0])/
 
  143                                          (P[i][1] - P[j][1]));
 
  144        if (Intersection < NewMin) {
 
  145          NewMin = Intersection;
 
  147        if (Intersection > NewMax) {
 
  148          NewMax = Intersection;
 
  154     if (IntervalIsVoid != 1) {
 
  155       (*IntervalMax) = NewMax;
 
  156       (*IntervalMin) = NewMin;
 
  160   if (IntervalIsVoid == 1) {
 
  167 template <class T, class F>
 
  168 G4double G4PolynomialSolver<T,F>::Newton (G4double IntervalMin,
 
  169                                           G4double IntervalMax)
 
  171   /* So now we have a good guess and an interval where
 
  172      if there are an intersection the root must be */
 
  175   G4double Gradient = 0;
 
  182   /* Reduce interval before applying Newton Method */
 
  186     while ((NewtonIsSafe = BezierClipping(&IntervalMin,&IntervalMax)) == 0) ;
 
  188     if (NewtonIsSafe == -1) {
 
  193   Lambda = IntervalMin;
 
  194   Value = (FunctionClass->*Function)(Lambda);
 
  197   //  while ((std::fabs(Value) > Precision)) {
 
  200     Value = (FunctionClass->*Function)(Lambda);
 
  202     Gradient = (FunctionClass->*Derivative)(Lambda);
 
  204     Lambda = Lambda - Value/Gradient ;
 
  206     if (std::fabs(Value) <= Precision) {