Geant4  10.00.p03
SpaceVectorP.cc
Go to the documentation of this file.
1 // -*- C++ -*-
2 // ---------------------------------------------------------------------------
3 //
4 // This file is a part of the CLHEP - a Class Library for High Energy Physics.
5 //
6 // SpaceVector
7 //
8 // This is the implementation of the subset of those methods of the Hep3Vector
9 // class which originated from the ZOOM SpaceVector class *and* which involve
10 // intrinsic properties or propeties relative to a second vector.
11 //
12 
13 #ifdef GNUPRAGMA
14 #pragma implementation
15 #endif
16 
17 #include "CLHEP/Vector/ThreeVector.h"
18 
19 #include <cmath>
20 
21 namespace CLHEP {
22 
23 //-********************************
24 // - 5 -
25 // Intrinsic properties of a vector
26 // and properties relative to a direction
27 //
28 //-********************************
29 
30 double Hep3Vector::beta() const {
31  double b = std::sqrt(mag2());
32 // if (b >= 1) {
33 // std::cerr << "Hep3Vector::beta() - "
34 // << "Beta taken for Hep3Vector of at least unit length" << std::endl;
35 // }
36  return b;
37 }
38 
39 double Hep3Vector::gamma() const {
40  double bbeta = std::sqrt(mag2());
41 // if (bbeta == 1) {
42 // std::cerr << "Hep3Vector::gamma() - "
43 // << "Gamma taken for Hep3Vector of unit magnitude -- infinite result"
44 // << std::endl;
45 // }
46 // if (bbeta > 1) {
47 // std::cerr << "Hep3Vector::gamma() - "
48 // << "Gamma taken for Hep3Vector of more than unit magnitude -- \n"
49 // << "the sqrt function would return NAN" << std::endl;
50 // }
51  return 1/std::sqrt(1-bbeta*bbeta);
52 }
53 
54 double Hep3Vector::rapidity() const {
55 // if (std::fabs(dz) == 1) {
56 // std::cerr << "Hep3Vector::rapidity() - "
57 // << "Rapidity in Z direction taken for Hep3Vector with |Z| = 1 -- \n"
58 // << "the log should return infinity" <, std::endl;
59 // }
60 // if (std::fabs(dz) > 1) {
61 // std::cerr << "Hep3Vector::rapidity() - "
62 // << "Rapidity in Z direction taken for Hep3Vector with |Z| > 1 -- \n"
63 // << "the log would return a NAN" << std::endl;
64 // }
65  // Want inverse std::tanh(dz):
66  return (.5 * std::log((1+dz)/(1-dz)) );
67 }
68 
69 double Hep3Vector::coLinearRapidity() const {
70  double b = beta();
71 // if (b == 1) {
72 // std::cerr << "Hep3Vector::coLinearRapidity() - "
73 // << "Co-linear Rapidity taken for Hep3Vector of unit length -- \n"
74 // << "the log should return infinity" << std::endl;
75 // }
76 // if (b > 1) {
77 // std::cerr << "Hep3Vector::coLinearRapidity() - "
78 // << "Co-linear Rapidity taken for Hep3Vector of more than unit length -- \n"
79 // << "the log would return a NAN" << std::endl;
80 // }
81  // Want inverse std::tanh(b):
82  return (.5 * std::log((1+b)/(1-b)) );
83 }
84 
85 //-***********************************************
86 // Other properties relative to a reference vector
87 //-***********************************************
88 
89 Hep3Vector Hep3Vector::project (const Hep3Vector & v2) const {
90  double mag2v2 = v2.mag2();
91  if (mag2v2 == 0) {
92  std::cerr << "Hep3Vector::project() - "
93  << "Attempt to take projection of vector against zero reference vector"
94  << std::endl;
95  return project();
96  }
97  return ( v2 * (dot(v2)/mag2v2) );
98 }
99 
100 double Hep3Vector::rapidity(const Hep3Vector & v2) const {
101  double vmag = v2.mag();
102  if ( vmag == 0 ) {
103  std::cerr << "Hep3Vector::rapidity() - "
104  << "Rapidity taken with respect to zero vector" << std::endl;
105  return 0;
106  }
107  double z1 = dot(v2)/vmag;
108 // if (std::fabs(z1) >= 1) {
109 // std::cerr << "Hep3Vector::rapidity() - "
110 // << "Rapidity taken for too large a Hep3Vector "
111 // << "-- would return infinity or NAN" << std::endl;
112 // }
113  // Want inverse std::tanh(z):
114  return (.5 * std::log((1+z1)/(1-z1)) );
115 }
116 
117 double Hep3Vector::eta(const Hep3Vector & v2) const {
118  // Defined as -std::log ( std::tan ( .5* theta(u) ) );
119  //
120  // Quicker is to use cosTheta:
121  // std::tan (theta/2) = std::sin(theta)/(1 + std::cos(theta))
122 
123  double r1 = getR();
124  double v2r = v2.mag();
125  if ( (r1 == 0) || (v2r == 0) ) {
126  std::cerr << "Hep3Vector::eta() - "
127  << "Cannot find pseudorapidity of a zero vector relative to a vector"
128  << std::endl;
129  return 0.;
130  }
131  double c = dot(v2)/(r1*v2r);
132  if ( c >= 1 ) {
133  c = 1; //-| We don't want to return NAN because of roundoff
134  std::cerr << "Hep3Vector::eta() - "
135  << "Pseudorapidity of vector relative to parallel vector -- \n"
136  << "will give infinite result" << std::endl;
137  // We can just go on; tangent will be 0, so
138  // std::log (tangent) will be -INFINITY, so result
139  // will be +INFINITY.
140  }
141  if ( c <= -1 ) {
142  std::cerr << "Hep3Vector::eta() - "
143  << "Pseudorapidity of vector relative to anti-parallel vector -- \n"
144  << "will give negative infinite result"<< std::endl;
145  //-| We don't want to return NAN because of roundoff
146  return ( negativeInfinity() );
147  // If we just went on, the tangent would be NAN
148  // so return would be NAN. But the proper limit
149  // of tan is +Infinity, so the return should be
150  // -INFINITY.
151  }
152 
153  double tangent = std::sqrt (1-c*c) / ( 1 + c );
154  return (- std::log (tangent));
155 
156 } /* eta (u) */
157 
158 
159 } // namespace CLHEP