2 // ********************************************************************
3 // * License and Disclaimer *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
27 // $Id: G4FieldTrack.icc 81686 2014-06-04 14:44:57Z gcosmo $
29 // -------------------------------------------------------------------
32 G4FieldTrack::G4FieldTrack( const G4FieldTrack& rStVec )
33 : fDistanceAlongCurve( rStVec.fDistanceAlongCurve),
34 fKineticEnergy( rStVec.fKineticEnergy ),
35 fRestMass_c2( rStVec.fRestMass_c2),
36 fLabTimeOfFlight( rStVec.fLabTimeOfFlight ),
37 fProperTimeOfFlight( rStVec.fProperTimeOfFlight ),
38 // fMomentumModulus( rStVec.fMomentumModulus ),
39 fPolarization( rStVec.fPolarization ),
40 fMomentumDir( rStVec.fMomentumDir ),
41 fChargeState( rStVec.fChargeState )
43 SixVector[0]= rStVec.SixVector[0];
44 SixVector[1]= rStVec.SixVector[1];
45 SixVector[2]= rStVec.SixVector[2];
46 SixVector[3]= rStVec.SixVector[3];
47 SixVector[4]= rStVec.SixVector[4];
48 SixVector[5]= rStVec.SixVector[5];
50 // fpChargeState= new G4ChargeState( *rStVec.fpChargeState );
51 // Can share charge state only when using handles etc
52 // fpChargeState = rStVec.fpChargeState;
56 G4FieldTrack::~G4FieldTrack()
58 // delete fpChargeState;
62 G4FieldTrack::SetCurvePnt(const G4ThreeVector& pPosition,
63 const G4ThreeVector& pMomentum,
66 SixVector[0] = pPosition.x();
67 SixVector[1] = pPosition.y();
68 SixVector[2] = pPosition.z();
70 SixVector[3] = pMomentum.x();
71 SixVector[4] = pMomentum.y();
72 SixVector[5] = pMomentum.z();
74 fMomentumDir = pMomentum.unit();
76 fDistanceAlongCurve= s_curve;
82 G4ThreeVector G4FieldTrack::GetPosition() const
84 G4ThreeVector myPosition( SixVector[0], SixVector[1], SixVector[2] );
89 void G4FieldTrack::SetPosition( G4ThreeVector pPosition)
91 SixVector[0] = pPosition.x();
92 SixVector[1] = pPosition.y();
93 SixVector[2] = pPosition.z();
97 const G4ThreeVector& G4FieldTrack::GetMomentumDir() const
99 // G4ThreeVector myMomentum( SixVector[3], SixVector[4], SixVector[5] );
100 // return myVelocity;
105 G4ThreeVector G4FieldTrack::GetMomentumDirection() const
111 G4double G4FieldTrack::GetCurveLength() const
113 return fDistanceAlongCurve;
117 void G4FieldTrack::SetCurveLength(G4double nCurve_s)
119 fDistanceAlongCurve= nCurve_s;
123 G4double G4FieldTrack::GetKineticEnergy() const
125 return fKineticEnergy;
129 void G4FieldTrack::SetKineticEnergy(G4double newKinEnergy)
131 fKineticEnergy=newKinEnergy;
135 G4ThreeVector G4FieldTrack::GetPolarization() const
137 return fPolarization;
141 void G4FieldTrack::SetPolarization(const G4ThreeVector& vecPlz)
143 fPolarization= vecPlz;
147 G4double G4FieldTrack::GetLabTimeOfFlight() const
149 return fLabTimeOfFlight;
153 void G4FieldTrack::SetLabTimeOfFlight(G4double nTOF)
155 fLabTimeOfFlight=nTOF;
159 G4double G4FieldTrack::GetProperTimeOfFlight() const
161 return fProperTimeOfFlight;
165 void G4FieldTrack::SetProperTimeOfFlight(G4double nTOF)
167 fProperTimeOfFlight=nTOF;
171 void G4FieldTrack::SetMomentumDir(G4ThreeVector newMomDir)
173 fMomentumDir= newMomDir;
177 G4ThreeVector G4FieldTrack::GetMomentum() const
179 return G4ThreeVector( SixVector[3], SixVector[4], SixVector[5] );
183 void G4FieldTrack::SetMomentum(G4ThreeVector pMomentum)
185 SixVector[3] = pMomentum.x();
186 SixVector[4] = pMomentum.y();
187 SixVector[5] = pMomentum.z();
189 fMomentumDir = pMomentum.unit();
193 G4double G4FieldTrack::GetCharge() const
195 return fChargeState.GetCharge();
198 // Dump values to array
200 // note that momentum direction is not saved
203 void G4FieldTrack::DumpToArray(G4double valArr[ncompSVEC] ) const
205 valArr[0]=SixVector[0];
206 valArr[1]=SixVector[1];
207 valArr[2]=SixVector[2];
208 valArr[3]=SixVector[3];
209 valArr[4]=SixVector[4];
210 valArr[5]=SixVector[5];
212 G4ThreeVector Momentum(valArr[3],valArr[4],valArr[5]);
214 // G4double mass_in_Kg;
215 // mass_in_Kg = fEnergy / velocity_mag_sq * (1-velocity_mag_sq/c_squared);
216 // valArr[6]= mass_in_Kg;
218 // The following components may or may not be integrated.
219 valArr[6]= fKineticEnergy;
221 // valArr[6]=fEnergy; // When it is integrated over, do this ...
222 valArr[7]=fLabTimeOfFlight;
223 valArr[8]=fProperTimeOfFlight;
224 valArr[9]=fPolarization.x();
225 valArr[10]=fPolarization.y();
226 valArr[11]=fPolarization.z();
227 // valArr[13]=fMomentumDir.x();
228 // valArr[14]=fMomentumDir.y();
229 // valArr[15]=fMomentumDir.z();
230 // valArr[]=fDistanceAlongCurve;
234 G4FieldTrack & G4FieldTrack::operator = ( const G4FieldTrack& rStVec )
236 if (&rStVec == this) return *this;
238 SixVector[0]= rStVec.SixVector[0];
239 SixVector[1]= rStVec.SixVector[1];
240 SixVector[2]= rStVec.SixVector[2];
241 SixVector[3]= rStVec.SixVector[3];
242 SixVector[4]= rStVec.SixVector[4];
243 SixVector[5]= rStVec.SixVector[5];
244 SetCurveLength( rStVec.GetCurveLength() );
246 fKineticEnergy= rStVec.fKineticEnergy;
247 fRestMass_c2= rStVec.fRestMass_c2;
248 SetLabTimeOfFlight( rStVec.GetLabTimeOfFlight() );
249 SetProperTimeOfFlight( rStVec.GetProperTimeOfFlight() );
250 SetPolarization( rStVec.GetPolarization() );
251 fMomentumDir= rStVec.fMomentumDir;
253 fChargeState= rStVec.fChargeState;
254 // (*fpChargeState)= *(rStVec.fpChargeState);
255 // fpChargeState= rStVec.fpChargeState; // Handles!!
260 G4FieldTrack::UpdateFourMomentum( G4double kineticEnergy,
261 const G4ThreeVector& momentumDirection )
263 G4double momentum_mag = std::sqrt(kineticEnergy*kineticEnergy
264 +2.0*fRestMass_c2*kineticEnergy);
265 G4ThreeVector momentumVector= momentum_mag * momentumDirection;
267 // SetMomentum( momentumVector ); // Set direction (from unit): used sqrt, div
268 SixVector[3] = momentumVector.x();
269 SixVector[4] = momentumVector.y();
270 SixVector[5] = momentumVector.z();
272 fMomentumDir= momentumDirection; // Set directly to avoid inaccuracy.
273 fKineticEnergy= kineticEnergy;
276 inline void G4FieldTrack::UpdateState( const G4ThreeVector& position,
277 G4double laboratoryTimeOfFlight,
278 const G4ThreeVector& momentumDirection,
279 G4double kineticEnergy
282 // SetCurvePnt( position, momentumVector, s_curve=0.0);
283 SetPosition( position);
284 fLabTimeOfFlight= laboratoryTimeOfFlight;
285 fDistanceAlongCurve= 0.0;
287 UpdateFourMomentum( kineticEnergy, momentumDirection);