Geant4  10.00.p02
SoTubs.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 //
28 // $Id: SoTubs.cc 66373 2012-12-18 09:41:34Z gcosmo $
29 //
30 /*-----------------------------HEPVis---------------------------------------*/
31 /* */
32 /* Node: SoTubs */
33 /* Description: Represents the G4Tubs Geant Geometry entity */
34 /* Author: Joe Boudreau Nov 11 1996 */
35 /* */
36 /*--------------------------------------------------------------------------*/
37 
38 #ifdef G4VIS_BUILD_OI_DRIVER
39 
40 // this :
41 #include "HEPVis/nodes/SoTubs.h"
42 
43 #include <assert.h>
44 #include <cmath>
45 
46 #include <Inventor/SbBox.h>
47 #include <Inventor/actions/SoGLRenderAction.h>
48 #include <Inventor/fields/SoSFFloat.h>
49 #include <Inventor/misc/SoChildList.h>
50 #include <Inventor/nodes/SoSeparator.h>
51 #include <Inventor/nodes/SoIndexedFaceSet.h>
52 #include <Inventor/nodes/SoNormal.h>
53 #include <Inventor/nodes/SoCoordinate3.h>
54 #include <Inventor/nodes/SoNormalBinding.h>
55 #include <Inventor/SoPrimitiveVertex.h>
56 #include <Inventor/elements/SoTextureCoordinateElement.h>
57 
58 #include "HEPVis/SbMath.h"
59 
60 // This statement is required
61 SO_NODE_SOURCE(SoTubs)
62 
63 // Constructor
64 SoTubs::SoTubs() {
65 
66 
67  // This statement is required
68  SO_NODE_CONSTRUCTOR(SoTubs);
69 
70  // Data fields are initialized like this:
71  SO_NODE_ADD_FIELD(pRMin, (0));
72  SO_NODE_ADD_FIELD(pRMax, (1));
73  SO_NODE_ADD_FIELD(pDz, (10));
74  SO_NODE_ADD_FIELD(pSPhi, (0));
75  SO_NODE_ADD_FIELD(pDPhi, ((float)(2*M_PI)));
76  SO_NODE_ADD_FIELD(alternateRep, (NULL));
77  children = new SoChildList(this);
78 }
79 
80 // Destructor
81 SoTubs::~SoTubs() {
82  delete children;
83 }
84 
85 
86 // initClass
87 void SoTubs::initClass(){
88  // This statement is required.
89  SO_NODE_INIT_CLASS(SoTubs,SoShape,"Shape");
90 }
91 
92 // generatePrimitives
93 void SoTubs::generatePrimitives(SoAction *action) {
94  // This variable is used to store each vertex
95  SoPrimitiveVertex pv;
96 
97  // Access the stat from the action
98  SoState *state = action->getState();
99 
100  // See if we have to use a texture coordinate function,
101  // rather than generating explicit texture coordinates.
102  SbBool useTexFunction=
103  (SoTextureCoordinateElement::getType(state) ==
104  SoTextureCoordinateElement::FUNCTION);
105 
106  // If we need to generate texture coordinates with a function,
107  // we'll need an SoGLTextureCoordinateElement. Otherwise, we'll
108  // set up the coordinates directly.
109  const SoTextureCoordinateElement* tce = NULL;
110  SbVec4f texCoord;
111  if (useTexFunction) {
112  tce = SoTextureCoordinateElement::getInstance(state);
113  }
114  else {
115  texCoord[2] = 0.0;
116  texCoord[3] = 1.0;
117  }
118  SbVec3f point, normal;
119 
120 
122  //-----------------------------------------------------
123 #define GEN_VERTEX(pv,x,y,z,s,t,nx,ny,nz) \
124  point.setValue((float)(x),(float)(y),(float)(z)); \
125  normal.setValue((float)(nx),(float)(ny),(float)(nz)); \
126  if (useTexFunction) { \
127  texCoord=tce->get(point,normal); \
128  } else { \
129  texCoord[0]=(float)(s); \
130  texCoord[1]=(float)(t); \
131  } \
132  pv.setPoint(point); \
133  pv.setNormal(normal); \
134  pv.setTextureCoords(texCoord); \
135  shapeVertex(&pv);
136  //-----------------------------------------------------
138 
139  int NPHI = (int)(2+22*std::fabs(pDPhi.getValue()/(2.0*M_PI)));
140  double deltaPhi = pDPhi.getValue()/NPHI, phi0 = pSPhi.getValue(),phi1=phi0+pDPhi.getValue();
141  double rMax=pRMax.getValue(),rMin=pRMin.getValue();
142  double zMax=pDz.getValue(),zMin=-zMax;
143  double cosPhi0=std::cos(phi0), sinPhi0=std::sin(phi0);
144  double cosPhi1=std::cos(phi1), sinPhi1=std::sin(phi1);
145  double cosDeltaPhi=std::cos(deltaPhi),sinDeltaPhi=std::sin(deltaPhi);
146  //
147  // The outer surface!
148  //
149  int i;
150  double sinPhi,cosPhi;
151  beginShape(action,TRIANGLE_STRIP);
152  sinPhi=sinPhi0;
153  cosPhi=cosPhi0;
154  for (i = 0; i<=NPHI; i++) {
155  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMax,0.0,0.0,cosPhi,sinPhi,0);
156  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMin,1.0,1.0,cosPhi,sinPhi,0);
157  inc(sinPhi, cosPhi, sinDeltaPhi, cosDeltaPhi);
158  }
159  endShape();
160  //
161  // The inner surface!
162  //
163  if(rMin!=0.F) {
164  beginShape(action,TRIANGLE_STRIP);
165  sinPhi=sinPhi0;
166  cosPhi=cosPhi0;
167  for (i = 0; i<=NPHI; i++) {
168  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi,zMax,0.0,0.0,-cosPhi,-sinPhi,0);
169  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi,zMin,1.0,1.0,-cosPhi,-sinPhi,0);
170  inc(sinPhi, cosPhi, sinDeltaPhi, cosDeltaPhi);
171  }
172  endShape();
173  }
174  if (std::fabs(deltaPhi)<2.0*M_PI) {
175  //
176  // The end
177  //
178  beginShape(action,TRIANGLE_STRIP);
179  sinPhi=sinPhi0;
180  cosPhi=cosPhi0;
181  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMax,0.0,0.0,sinPhi,-cosPhi,0);
182  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMin,1.0,1.0,sinPhi,-cosPhi,0);
183  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi,zMax,1.0,0.0,sinPhi,-cosPhi,0);
184  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi,zMin,0.0,1.0,sinPhi,-cosPhi,0);
185  endShape();
186  //
187  // The other end
188  //
189  beginShape(action,TRIANGLE_STRIP);
190  sinPhi=sinPhi1;
191  cosPhi=cosPhi1;
192  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi, zMax,0.0,0.0,-sinPhi,+cosPhi,0);
193  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi, zMin,1.0,1.0,-sinPhi,+cosPhi,0);
194  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi, zMax,1.0,0.0,-sinPhi,+cosPhi,0);
195  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi, zMin,0.0,1.0,-sinPhi,+cosPhi,0);
196  endShape();
197  }
198  //
199  // The outer surface at z=+PDZ
200  //
201  if(rMin==0.F) {
202  beginShape(action,TRIANGLE_FAN);
203  sinPhi=sinPhi0;
204  cosPhi=cosPhi0;
205  GEN_VERTEX(pv,0,0,zMax,0.0,0.0,0,0,1);
206  for (i = 0; i<=NPHI; i++) {
207  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMax,1.0,1.0,0,0,1);
208  inc(sinPhi, cosPhi, sinDeltaPhi, cosDeltaPhi);
209  }
210  endShape();
211  //
212  // The outer surface at z=-PDZ
213  //
214  beginShape(action,TRIANGLE_FAN);
215  sinPhi=sinPhi0;
216  cosPhi=cosPhi0;
217  GEN_VERTEX(pv,0,0,zMin,0.0,0.0,0,0,-1);
218  for (i = 0; i<=NPHI; i++) {
219  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMin,1.0,1.0,0,0,-1);
220  inc(sinPhi, cosPhi, sinDeltaPhi, cosDeltaPhi);
221  }
222  endShape();
223  } else {
224  beginShape(action,TRIANGLE_STRIP);
225  sinPhi=sinPhi0;
226  cosPhi=cosPhi0;
227  for (i = 0; i<=NPHI; i++) {
228  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi,zMax,0.0,0.0,0,0,1);
229  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMax,1.0,1.0,0,0,1);
230  inc(sinPhi, cosPhi, sinDeltaPhi, cosDeltaPhi);
231  }
232  endShape();
233  //
234  // The outer surface at z=-PDZ
235  //
236  beginShape(action,TRIANGLE_STRIP);
237  sinPhi=sinPhi0;
238  cosPhi=cosPhi0;
239  for (i = 0; i<=NPHI; i++) {
240  GEN_VERTEX(pv,rMin*cosPhi,rMin*sinPhi,zMin,0.0,0.0,0,0,-1);
241  GEN_VERTEX(pv,rMax*cosPhi,rMax*sinPhi,zMin,1.0,1.0,0,0,-1);
242  inc(sinPhi, cosPhi, sinDeltaPhi, cosDeltaPhi);
243  }
244  endShape();
245  }
246 }
247 
248 // getChildren
249 SoChildList *SoTubs::getChildren() const {
250  return children;
251 }
252 
253 
254 // computeBBox
255 void SoTubs::computeBBox(SoAction *, SbBox3f &box, SbVec3f &center ){
256  SbVec3f vmin(-pRMax.getValue(),-pRMax.getValue(),-pDz.getValue()),
257  vmax( pRMax.getValue(), pRMax.getValue(), pDz.getValue());
258  center.setValue(0,0,0);
259  box.setBounds(vmin,vmax);
260 }
261 
262 
263 // updateChildren
264 void SoTubs::updateChildren() {
265 
266  // Redraw the G4Tubs....
267 
268  assert(children->getLength()==1);
269  SoSeparator *sep = (SoSeparator *) ( *children)[0];
270  SoCoordinate3 *theCoordinates = (SoCoordinate3 *) ( sep->getChild(0));
271  SoNormal *theNormals = (SoNormal *) ( sep->getChild(1));
272  SoNormalBinding *theNormalBinding = (SoNormalBinding *) ( sep->getChild(2));
273  SoIndexedFaceSet *theFaceSet = (SoIndexedFaceSet *) ( sep->getChild(3));
274 
275 
276  const int NPHI=24, NPOINTS=2*(2*NPHI+2), NFACES=4*NPHI+2, NINDICES = NFACES*5;
277  float points[NPOINTS][3],normals[NFACES][3];
278 #ifdef INVENTOR2_0
279  static long indices[NINDICES];
280 #else
281  static int32_t indices[NINDICES];
282 #endif
283 
284  static int init=0;
285  double phi, pp, DeltaPhi;
286 
287  // Indices need to be generated once! This is here to keep it close to the point
288  // generation, since otherwise it will be confusing.
289 
290  int i;
291  if (!init) {
292  init = 1;
293  // Outer face
294  for (i = 0; i< NPHI; i++) {
295  // 0 1 3 2;
296  indices[5*i+0] = 2*i+0;
297  indices[5*i+1] = 2*i+1;
298  indices[5*i+2] = 2*i+3;
299  indices[5*i+3] = 2*i+2;
300  indices[5*i+4] = SO_END_FACE_INDEX;
301  }
302  // the inner face
303  for (i=0;i<NPHI;i++) {
304  indices[5*1*NPHI + 5*i+0] = 2*NPHI+2 + 2*i+0;
305  indices[5*1*NPHI + 5*i+1] = 2*NPHI+2 + 2*i+1;
306  indices[5*1*NPHI + 5*i+2] = 2*NPHI+2 + 2*i+3;
307  indices[5*1*NPHI + 5*i+3] = 2*NPHI+2 + 2*i+2;
308  indices[5*1*NPHI + 5*i+4] = SO_END_FACE_INDEX;
309  }
310  // the top side
311  for (i=0;i<NPHI;i++) {
312  indices[5*2*NPHI + 5*i+0] = 2*i+0;
313  indices[5*2*NPHI + 5*i+1] = 2*i+2;
314  indices[5*2*NPHI + 5*i+2] = NPOINTS - (2*i+4);
315  indices[5*2*NPHI + 5*i+3] = NPOINTS - (2*i+2);
316  indices[5*2*NPHI + 5*i+4] = SO_END_FACE_INDEX;
317  }
318  // the bottom side
319  for (i=0;i<NPHI;i++) {
320  indices[5*3*NPHI + 5*i+0] = 2*i+1;
321  indices[5*3*NPHI + 5*i+1] = NPOINTS - (2*i+1);
322  indices[5*3*NPHI + 5*i+2] = NPOINTS - (2*i+3);
323  indices[5*3*NPHI + 5*i+3] = 2*i+3;
324  indices[5*3*NPHI + 5*i+4] = SO_END_FACE_INDEX;
325  }
326  // the odd side
327  indices[5*4*NPHI +0] = 2*NPHI;
328  indices[5*4*NPHI +1] = 2*NPHI+1;
329  indices[5*4*NPHI +2] = 2*NPHI+3;
330  indices[5*4*NPHI +3] = 2*NPHI+2;
331  indices[5*4*NPHI +4] = SO_END_FACE_INDEX;
332  // aother odd side
333  indices[5*4*NPHI +5 +0] = 0;
334  indices[5*4*NPHI +5 +1] = NPOINTS-2;
335  indices[5*4*NPHI +5 +2] = NPOINTS-1;
336  indices[5*4*NPHI +5 +3] = 1;
337  indices[5*4*NPHI +5 +4] = SO_END_FACE_INDEX;
338  }
339  // Points need to be generated each time:
340  if (pDPhi.getValue()<2*M_PI) {
341  // the odd side
342  indices[5*4*NPHI +0] = 2*NPHI;
343  indices[5*4*NPHI +1] = 2*NPHI+1;
344  indices[5*4*NPHI +2] = 2*NPHI+3;
345  indices[5*4*NPHI +3] = 2*NPHI+2;
346  indices[5*4*NPHI +4] = SO_END_FACE_INDEX;
347  // aother odd side
348  indices[5*4*NPHI +5 +0] = 0;
349  indices[5*4*NPHI +5 +1] = NPOINTS-2;
350  indices[5*4*NPHI +5 +2] = NPOINTS-1;
351  indices[5*4*NPHI +5 +3] = 1;
352  indices[5*4*NPHI +5 +4] = SO_END_FACE_INDEX;
353  }
354  else {
355  // the odd side
356  indices[5*4*NPHI +0] = SO_END_FACE_INDEX;
357  indices[5*4*NPHI +1] = SO_END_FACE_INDEX;
358  indices[5*4*NPHI +2] = SO_END_FACE_INDEX;
359  indices[5*4*NPHI +3] = SO_END_FACE_INDEX;
360  indices[5*4*NPHI +4] = SO_END_FACE_INDEX;
361  // aother odd side
362  indices[5*4*NPHI +5 +0] = SO_END_FACE_INDEX;
363  indices[5*4*NPHI +5 +1] = SO_END_FACE_INDEX;
364  indices[5*4*NPHI +5 +2] = SO_END_FACE_INDEX;
365  indices[5*4*NPHI +5 +3] = SO_END_FACE_INDEX;
366  indices[5*4*NPHI +5 +4] = SO_END_FACE_INDEX;
367  }
368  // The outer surface
369  DeltaPhi = pDPhi.getValue()/NPHI, phi = pSPhi.getValue();
370  for (i = 0; i<=NPHI; i++) {
371  points[2*i+0][0] = pRMax.getValue()*FCOS(phi);
372  points[2*i+0][1]= pRMax.getValue()*FSIN(phi);
373  points[2*i+0][2] = +pDz.getValue();
374 
375  points[2*i+1][0] = pRMax.getValue()*FCOS(phi);
376  points[2*i+1][1]= pRMax.getValue()*FSIN(phi);
377  points[2*i+1][2] = -pDz.getValue();
378 
379  pp = phi+DeltaPhi/2.0;
380  if (i!=NPHI) {
381  normals[i][0] = FCOS(pp);
382  normals[i][1] = FSIN(pp);
383  normals[i][2] = 0;
384  }
385  phi+=DeltaPhi;
386  }
387  // The inner surface
388  phi = pSPhi.getValue() + pDPhi.getValue();
389  for (i = 0; i<=NPHI; i++) {
390  points[2*NPHI+2+2*i+0][0] = pRMin.getValue()*FCOS(phi);
391  points[2*NPHI+2+2*i+0][1] = pRMin.getValue()*FSIN(phi);
392  points[2*NPHI+2+2*i+0][2] = +pDz.getValue();
393  points[2*NPHI+2+2*i+1][0] = pRMin.getValue()*FCOS(phi);
394  points[2*NPHI+2+2*i+1][1] = pRMin.getValue()*FSIN(phi);
395  points[2*NPHI+2+2*i+1][2] = -pDz.getValue();
396  pp = phi-DeltaPhi/2.0;
397  if (i!=NPHI) {
398  normals[NPHI+i][0] = -FCOS(pp);
399  normals[NPHI+i][1] = -FSIN(pp);
400  normals[NPHI+i][2] = 0;
401  }
402  phi-=DeltaPhi;
403  }
404  // The top side
405  for (i=0;i<NPHI;i++) {
406  normals[2*NPHI+i][0]=normals[2*NPHI+i][1]=0;
407  normals[2*NPHI+i][2]= 1.0;
408  }
409  // The bottom side
410  for (i=0;i<NPHI;i++) {
411  normals[3*NPHI+i][0]=normals[3*NPHI+i][1]=0;
412  normals[3*NPHI+i][2]= -1.0;
413  }
414  // The odd side
415  phi = pSPhi.getValue();
416  normals[4*NPHI+0][0]= FSIN(phi);
417  normals[4*NPHI+0][1]= -FCOS(phi);
418  normals[4*NPHI+0][2]=0;
419 
420  // Another odd side
421  phi = pSPhi.getValue()+pDPhi.getValue();
422  normals[4*NPHI+1][0]= -FSIN(phi);
423  normals[4*NPHI+1][1]= +FCOS(phi);
424  normals[4*NPHI+1][2]=0;
425 
426  for (int np=0;np<NPOINTS; np++) theCoordinates->point.set1Value(np,points[np][0],points[np][1],points[np][2]);
427  for (int ni=0;ni<NINDICES;ni++) theFaceSet->coordIndex.set1Value(ni,indices[ni]);
428  for (int nf=0;nf<NFACES;nf++) theNormals->vector.set1Value(nf,normals[nf][0],normals[nf][1],normals[nf][2]);
429  theNormalBinding->value=SoNormalBinding::PER_FACE;
430 }
431 
432 // generateChildren
433 void SoTubs::generateChildren() {
434 
435  // This routines creates one SoSeparator, one SoCoordinate3, and
436  // one SoLineSet, and puts it in the child list. This is done only
437  // once, whereas redrawing the position of the coordinates occurs each
438  // time an update is necessary, in the updateChildren routine.
439 
440  assert(children->getLength() ==0);
441  SoSeparator *sep = new SoSeparator();
442  SoCoordinate3 *theCoordinates = new SoCoordinate3();
443  SoNormal *theNormals = new SoNormal();
444  SoNormalBinding *theNormalBinding = new SoNormalBinding();
445  SoIndexedFaceSet *theFaceSet = new SoIndexedFaceSet();
446  //
447  // This line costs some in render quality! but gives speed.
448  //
449  sep->addChild(theCoordinates);
450  sep->addChild(theNormals);
451  sep->addChild(theNormalBinding);
452  sep->addChild(theFaceSet);
453  children->append(sep);
454 }
455 
456 // generateAlternateRep
457 void SoTubs::generateAlternateRep() {
458 
459  // This routine sets the alternate representation to the child
460  // list of this mode.
461 
462  if (children->getLength() == 0) generateChildren();
463  updateChildren();
464  alternateRep.setValue((SoSeparator *) ( *children)[0]);
465 }
466 
467 // clearAlternateRep
468 void SoTubs::clearAlternateRep() {
469  alternateRep.setValue(NULL);
470 }
471 
472 #endif
#define assert(x)
Definition: mymalloc.cc:1309
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:77